Gear Crack Propagation Path Studies: Guidelines for Ultra-Safe Design


Book Description

Design guidelines have been established to prevent catastrophic rim fracture failure modes when considering gear tooth bending fatigue. Analysis was performed using the finite element method with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth/rim fracture modes including effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 250 pressure angle teeth had an increased occurrence of tooth fractures over rim fractures when compared to 200 pressure angle teeth. For gears with constant number of teeth or gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.




Computerized Generation and Simulation of Meshing of Modified Spur and Helical Gears Manufactured by Shaving


Book Description

Modification of geometry of spur and helical gears with parallel axes and helical gears with crossed axes is proposed. The finishing process of gear generation is shaving. The purposes of modification of the gear geometry are to localize and stabilize the bearing contact, and to reduce noise and vibration. The goals mentioned above are achieved by using profile crowning and plunging the shaver by a prescribed motion during pinion generation. The pinion becomes double crowned. The gear member is generated as a conventional involute gear. A tooth contact analysis (TCA) program for simulation of meshing and contact was developed and the analysis is illustrated with TCA results for spur and helical gears.