Speech & Language Processing


Book Description




Foundations of Statistical Natural Language Processing


Book Description

Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.




Efficient Parsing for Natural Language


Book Description

Parsing Efficiency is crucial when building practical natural language systems. 'Ibis is especially the case for interactive systems such as natural language database access, interfaces to expert systems and interactive machine translation. Despite its importance, parsing efficiency has received little attention in the area of natural language processing. In the areas of compiler design and theoretical computer science, on the other hand, parsing algorithms 3 have been evaluated primarily in terms of the theoretical worst case analysis (e.g. lXn», and very few practical comparisons have been made. This book introduces a context-free parsing algorithm that parses natural language more efficiently than any other existing parsing algorithms in practice. Its feasibility for use in practical systems is being proven in its application to Japanese language interface at Carnegie Group Inc., and to the continuous speech recognition project at Carnegie-Mellon University. This work was done while I was pursuing a Ph.D degree at Carnegie-Mellon University. My advisers, Herb Simon and Jaime Carbonell, deserve many thanks for their unfailing support, advice and encouragement during my graduate studies. I would like to thank Phil Hayes and Ralph Grishman for their helpful comments and criticism that in many ways improved the quality of this book. I wish also to thank Steven Brooks for insightful comments on theoretical aspects of the book (chapter 4, appendices A, B and C), and Rich Thomason for improving the linguistic part of tile book (the very beginning of section 1.1).




Natural Language Processing with Python


Book Description

This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.




Natural Language Parsing


Book Description

This collection of new papers by leading researchers on natural language parsing brings together different fields of research, each making significant contributions to the others. The volume includes papers applying the results of experimental psychological studies of parsing to linguistic theory. Others which present computational models of parsing and a mathematical linguistics paper on tree-adjoining grammars and parsing.




Natural Language Processing


Book Description

This undergraduate textbook introduces essential machine learning concepts in NLP in a unified and gentle mathematical framework.




Natural Language Processing with Python and spaCy


Book Description

An introduction to natural language processing with Python using spaCy, a leading Python natural language processing library. Natural Language Processing with Python and spaCy will show you how to create NLP applications like chatbots, text-condensing scripts, and order-processing tools quickly and easily. You'll learn how to leverage the spaCy library to extract meaning from text intelligently; how to determine the relationships between words in a sentence (syntactic dependency parsing); identify nouns, verbs, and other parts of speech (part-of-speech tagging); and sort proper nouns into categories like people, organizations, and locations (named entity recognizing). You'll even learn how to transform statements into questions to keep a conversation going. You'll also learn how to: • Work with word vectors to mathematically find words with similar meanings (Chapter 5) • Identify patterns within data using spaCy's built-in displaCy visualizer (Chapter 7) • Automatically extract keywords from user input and store them in a relational database (Chapter 9) • Deploy a chatbot app to interact with users over the internet (Chapter 11) "Try This" sections in each chapter encourage you to practice what you've learned by expanding the book's example scripts to handle a wider range of inputs, add error handling, and build professional-quality applications. By the end of the book, you'll be creating your own NLP applications with Python and spaCy.




Natural Language Parsing Systems


Book Description

Up to now there has been no scientific publication on natural lan guage research that presents a broad and complex description of the current problems of parsing in the context of Artificial Intelli gence. However, there are many interesting results from this domain appearing mainly in numerous articles published in pro fessional journals. In view of this situation, the objective of this book is to enable scientists from different countries to present the results of their research on natural language parsing in the form of more detailed papers than would be possible in professional jour nals. This book thus provides a collection of studies written by well known scientists whose earlier publications have greatly contributed to the development of research on natural language parsing. Jaime G. Carbonell and Philip J. Hayes present in their paper "Robust Parsing Using Multiple Construction-Specific Strategies" two small experimental parsers, implemented to illustrate the advantages of a multi-strategy approach to parsers, with strategies selected according to the type of construction being parsed at any given time. This presentation is followed by the description of a parsing algorithm, integrating some of the best features of the two smaller parsers, including case-frame instantiation and partial pat tern-matching strategies.




Embeddings in Natural Language Processing


Book Description

Embeddings have undoubtedly been one of the most influential research areas in Natural Language Processing (NLP). Encoding information into a low-dimensional vector representation, which is easily integrable in modern machine learning models, has played a central role in the development of NLP. Embedding techniques initially focused on words, but the attention soon started to shift to other forms: from graph structures, such as knowledge bases, to other types of textual content, such as sentences and documents. This book provides a high-level synthesis of the main embedding techniques in NLP, in the broad sense. The book starts by explaining conventional word vector space models and word embeddings (e.g., Word2Vec and GloVe) and then moves to other types of embeddings, such as word sense, sentence and document, and graph embeddings. The book also provides an overview of recent developments in contextualized representations (e.g., ELMo and BERT) and explains their potential in NLP. Throughout the book, the reader can find both essential information for understanding a certain topic from scratch and a broad overview of the most successful techniques developed in the literature.




Natural Language Processing with Spark NLP


Book Description

If you want to build an enterprise-quality application that uses natural language text but aren’t sure where to begin or what tools to use, this practical guide will help get you started. Alex Thomas, principal data scientist at Wisecube, shows software engineers and data scientists how to build scalable natural language processing (NLP) applications using deep learning and the Apache Spark NLP library. Through concrete examples, practical and theoretical explanations, and hands-on exercises for using NLP on the Spark processing framework, this book teaches you everything from basic linguistics and writing systems to sentiment analysis and search engines. You’ll also explore special concerns for developing text-based applications, such as performance. In four sections, you’ll learn NLP basics and building blocks before diving into application and system building: Basics: Understand the fundamentals of natural language processing, NLP on Apache Stark, and deep learning Building blocks: Learn techniques for building NLP applications—including tokenization, sentence segmentation, and named-entity recognition—and discover how and why they work Applications: Explore the design, development, and experimentation process for building your own NLP applications Building NLP systems: Consider options for productionizing and deploying NLP models, including which human languages to support