NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures


Book Description

The 2003 edition of the NEHRP Recommended Provisions contains several significant changes, including: a reformatting to improve its usability; introduction of a simplified design procedure, an updating of the seismic design maps and how they are presented; a modification in the redundancy factor; the addition of ultimate strength design provisions for foundations; the addition of several new structural systems, including buckling restrained braced frames and steel plate shear walls; structures with damping systems has been moved from an appendix to a new chapter; and inclusion of new or updated material industry reference standards for steel, concrete, masonry, and wood.




National Earthquake Resilience


Book Description

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.







Earthquake-Resistant Structures


Book Description

Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. - Written by a world renowned author and educator - Seismic design and retrofitting techniques for all structures - Tools improve current building and bridge designs - Latest methods for building earthquake-resistant structures - Combines physical and geophysical science with structural engineering







Fundamentals of Seismic Loading on Structures


Book Description

This book provides a practical guide to the basic essentials of earthquake engineering with a focus on seismic loading and structural design. Benefiting from the author’s extensive career in structural and earthquake engineering, dynamic analysis and lecturing, it is written from an industry perspective at a level suitable for graduate students. Fundamentals of Seismic Loading on Structures is organised into four major sections: introduction to earthquakes and related engineering problems, analysis, seismic loading, and design concepts. From a practical perspective, reviews linear and non-linear behaviour, introduces concepts of uniform hazard spectra, discusses loading provisions in design codes and examines soil-structure interaction issues, allowing the reader to quickly identify and implement information in a working environment. Discusses probabilistic methods that are widely employed in the assessment of seismic hazard, illustrating the use of Monte Carlo simulation with a number of worked examples. Summarises the latest developments in the field such as performance-based seismic engineering and advances in liquefaction research. “There are many books on earthquake engineering, but few are of direct use to the practising structural designer. This one, however, offers a new perspective, putting emphasis on the practical aspects of quantifying seismic loading, and explaining the importance of geotechnical effects during a major seismic event in readily understandable terms. The author has succeeded in marrying important seismological considerations with structural engineering practice, and this long-awaited book will find ready acceptance in the profession.” Professor Patrick J. Dowling CBE, DL, DSc, FIStructE, Hon MRIA, FIAE, FREng, FRS Chairman, British Association for the Advancement of Science Emeritus Professor and Retired Vice Chancellor, University of Surrey




SEAOC Blue Book


Book Description

This SEAOC Blue Book: Seismic Design Recommendations is the premier publication of the SEAOC Seismology Committee. The name Blue Book is renowned worldwide among engineers, researchers, and building officials. Since 1959, the SEAOC Blue Book, previously titled Recommended Lateral Force Requirements and Commentary, has been a prescient publication of earthquake engineering. The Blue Book has been at the vanguard of earthquake engineering in California and around the world. This edition of the Blue Books offers a series of articles, that cover specific topics, some related to a particular code provision and some more general relating to an area of practice. While different than the previous editions of the Blue Books, it builds upon the tremendous effort of those who have forged earthquake engineering practice via the previous half-century of Blue Book editions. The Blue Book provides: insight and discussion of earthquake engineering concepts; interpretations of sometimes ambiguous or conflicting provisions of various codes, standards, and guidelines; and practical guidance on design implementation.




Elements of Earthquake Engineering and Structural Dynamics


Book Description

"In order to reduce the seismic risk facing many densely populated regions worldwide, including Canada and the United States, modern earthquake engineering should be more widely applied. But current literature on earthquake engineering may be difficult to grasp for structural engineers who are untrained in seismic design. In addition no single resource addressed seismic design practices in both Canada and the United States until now. Elements of Earthquake Engineering and Structural Dynamics was written to fill the gap. It presents the key elements of earthquake engineering and structural dynamics at an introductory level and gives readers the basic knowledge they need to apply the seismic provisions contained in Canadian and American building codes."--Résumé de l'éditeur.




Structural Design of Low-Rise Buildings in Cold-Formed Steel, Reinforced Masonry, and Structural Timber


Book Description

A concise guide to the structural design of low-rise buildings in cold-formed steel, reinforced masonry, and structural timber This practical reference discusses the types of low-rise building structural systems, outlines the design process, and explains how to determine structural loadings and load paths pertinent to low-rise buildings. Characteristics and properties of materials used in the construction of cold-formed steel, reinforced masonry, and structural timber buildings are described along with design requirements. The book also provides an overview of noncomposite and composite open-web joist floor systems. Design code requirements referenced by the 2009 International Building Code are used throughout. This is an ideal resource for structural engineering students, professionals, and those preparing for licensing examinations. Structural Design of Low-Rise Buildings in Cold-Formed Steel, Reinforced Masonry, and Structural Timber covers: Low-rise building systems Loads and load paths in low-rise buildings Design of cold-formed steel structures Structural design of reinforced masonry Design of structural timber Structural design with open-web joists




Seismic Behavior of Steel Storage Pallet Racking Systems


Book Description

This book presents the main outcomes of the first European research project on the seismic behavior of adjustable steel storage pallet racking systems. In particular, it describes a comprehensive and unique set of full-scale tests designed to assess such behavior. The tests performed include cyclic tests of full-scale rack components, namely beam-to-upright connections and column base connections; static and dynamic tests to assess the friction factor between pallets and rack beams; full-scale pushover and pseudodynamic tests of storage racks in down-aisle and cross-aisle directions; and full-scale dynamic tests on two-bay, three-level rack models. The implications of the findings of this extensive testing regime on the seismic behavior of racking systems are discussed in detail, highlighting e.g. the confirmation that under severe dynamic conditions “sliding” is the main factor influencing rack response. This work was conceived during the development of the SEISRACKS project. Its outcomes will contribute significantly to increasing our knowledge of the structural behavior of racks under earthquake conditions and should inform future rack design.