The National Energy Modeling System


Book Description

This book addresses the process and actions for developing enhanced capabilities to analyze energy policy issues and perform strategic planning activities at the U.S. Department of Energy (DOE) on an ongoing basis. Within the broader context of useful analytical and modeling capabilities within and outside the DOE, this volume examines the requirements that a National Energy Modeling System (NEMS) should fulfill, presents an overall architecture for a NEMS, identifies data needs, and outlines priority actions for timely implementation of the system.




Nems


Book Description







The National Energy Modeling System: An Overview


Book Description

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.




Proceedings of the National Energy Modeling System Conference


Book Description

Provides potential users of the Nat. Energy Modeling System under development a detailed look at the components of the new modeling system, and affords the opportunity for critical analysis of the system by recognized experts in the modeling field and input from potential users about how the system can best address their needs. Covers: oil and gas, renewable fuels, electricity planning, petroleum markets, gas transmission and distribution, coal supply and coal synthetics, transport. demand, oil supply, and more. Charts and tables. Over 80 presentations.




Learning and Cost Reductions for Generating Technologies in the National Energy Modeling System (NEMS).


Book Description

This report describes how Learning-by-Doing (LBD) is implemented endogenously in the National Energy Modeling System (NEMS) for generating plants. LBD is experiential learning that correlates to a generating technology's capacity growth. The annual amount of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no straightforward way to integrate and make sense of all the diffuse information related to the endogenous learning calculation in NEMS. This paper organizes the relevant information from the NEMS documentation, source code, input files, and output files, in order to make the model's logic more accessible. The end results are shown in three ways: in a simple spreadsheet containing all the parameters related to endogenous learning; by an algorithm that traces how the parameters lead to cost reductions; and by examples showing how AEO 2004 forecasts the reduction of overnight costs for generating technologies over time.







Natural Gas Transmission and Distribution Model of the National Energy Modeling System


Book Description

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA's modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.




Proceedings of the National Energy Modeling System Conference


Book Description

Purpose of the conference was to give potential users of the National Energy Modeling System (NEMS), under development in the Energy Information Administration, a detailed look at its components, and to provide an opportunity for critical analysis of the system by experts in the modeling field and input about how the system can best address the users' needs. During the conference, 43 reviewers participated in panel discussions of the components of NEMS: oil and gas supply, buildings demand, macroeconomics (national module panel), macroeconomics (interindustry and regional module panel), gas transmission and distribution, renewable fuels, international oil, industrial demand, electricity planning, refineries and petroleum markets, electricity operations, system integration and user interfaces, transportation demand, coal supply and synthetics, and electricity finance and pricing.