Neural Engineering Techniques for Autism Spectrum Disorder, Volume 2


Book Description

Neural Engineering for Autism Spectrum Disorder, Volume Two: Diagnosis and Clinical Analysis presents the latest advances in neural engineering and biomedical engineering as applied to the clinical diagnosis and treatment of Autism Spectrum Disorder (ASD). Advances in the role of neuroimaging, magnetic resonance spectroscopy, MRI, fMRI, DTI, video analysis of sensory-motor and social behaviors, and suitable data analytics useful for clinical diagnosis and research applications for Autism Spectrum Disorder are covered, including relevant case studies. The application of brain signal evaluation, EEG analytics, fuzzy model and temporal fractal analysis of rest state BOLD signals and brain signals are also presented. A clinical guide for general practitioners is provided along with a variety of assessment techniques such as magnetic resonance spectroscopy. The book is presented in two volumes, including Volume One: Imaging and Signal Analysis Techniques comprised of two Parts: Autism and Medical Imaging, and Autism and Signal Analysis. Volume Two: Diagnosis and Treatment includes Autism and Clinical Analysis: Diagnosis, and Autism and Clinical Analysis: Treatment. - Presents applications of Neural Engineering techniques for diagnosis of Autism Spectrum Disorder (ASD) - Includes in-depth technical coverage of assessment techniques, such as the functional and structural networks underlying visuospatial vs. linguistic reasoning in autism - Covers treatment techniques for Autism Spectrum Disorder (ASD), including social skills intervention, behavioral treatment, evidence-based treatments, and technical tools such as Magnetic Resonance Spectroscopy for ASD - Written by engineers for engineers, computer scientists, researchers and clinicians who need to understand the technology and applications of Neural Engineering for the detection and diagnosis of Autism Spectrum Disorder (ASD)




Neural Engineering Techniques for Autism Spectrum Disorder


Book Description

Neural Engineering for Autism Spectrum Disorder, Volume One: Imaging and Signal Analysis Techniques presents the latest advances in neural engineering and biomedical engineering as applied to the clinical diagnosis and treatment of Autism Spectrum Disorder (ASD). Advances in the role of neuroimaging, infrared spectroscopy, sMRI, fMRI, DTI, social behaviors and suitable data analytics useful for clinical diagnosis and research applications for Autism Spectrum Disorder are covered, including relevant case studies. The application of brain signal evaluation, EEG analytics, feature selection, and analysis of blood oxygen level-dependent (BOLD) signals are presented for detection and estimation of the degree of ASD. - Presents applications of Neural Engineering and other Machine Learning techniques for the diagnosis of Autism Spectrum Disorder (ASD) - Includes in-depth technical coverage of imaging and signal analysis techniques, including coverage of functional MRI, neuroimaging, infrared spectroscopy, sMRI, fMRI, DTI, and neuroanatomy of autism - Covers Signal Analysis for the detection and estimation of Autism Spectrum Disorder (ASD), including brain signal analysis, EEG analytics, feature selection, and analysis of blood oxygen level-dependent (BOLD) signals for ASD - Written to help engineers, computer scientists, researchers and clinicians understand the technology and applications of Neural Engineering for the detection and diagnosis of Autism Spectrum Disorder (ASD)




Artificial Intelligence and Data Science


Book Description

This book constitutes selected papers presented at the First International Conference on Artificial Intelligence and Data Science, ICAIDS 2021, held in Hyderabad, India, in December 2021. The 43 papers presented in this volume were thoroughly reviewed and selected from the 195 submissions. They focus on topics of artificial intelligence for intelligent applications and data science for emerging technologies.




Proceedings of the Future Technologies Conference (FTC) 2020, Volume 2


Book Description

This book provides the state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research. The fifth 2020 Future Technologies Conference was organized virtually and received a total of 590 submissions from academic pioneering researchers, scientists, industrial engineers, and students from all over the world. The submitted papers covered a wide range of important topics including but not limited to computing, electronics, artificial intelligence, robotics, security and communications and their applications to the real world. After a double-blind peer review process, 210 submissions (including 6 poster papers) have been selected to be included in these proceedings. One of the meaningful and valuable dimensions of this conference is the way it brings together a large group of technology geniuses in one venue to not only present breakthrough research in future technologies, but also to promote discussions and debate of relevant issues, challenges, opportunities and research findings. The authors hope that readers find the book interesting, exciting and inspiring.




Agents and Multi-Agent Systems: Technologies and Applications 2022


Book Description

The book highlights new trends and challenges in research on agents and the new digital and knowledge economy. It includes papers on business process management, agent-based modeling and simulation and anthropic-oriented computing that were originally presented at the 16th International KES Conference on Agents and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2022), held at Rhodes, Greece in June 20–22, 2022. The respective papers cover topics such as software agents, multi-agent systems, agent modeling, mobile and cloud computing, big data analysis, business intelligence, artificial intelligence, social systems, computer embedded systems and nature inspired manufacturing, all of which contribute to the modern digital economy.




Data Classification and Incremental Clustering in Data Mining and Machine Learning


Book Description

This book is a comprehensive, hands-on guide to the basics of data mining and machine learning with a special emphasis on supervised and unsupervised learning methods. The book lays stress on the new ways of thinking needed to master in machine learning based on the Python, R, and Java programming platforms. This book first provides an understanding of data mining, machine learning and their applications, giving special attention to classification and clustering techniques. The authors offer a discussion on data mining and machine learning techniques with case studies and examples. The book also describes the hands-on coding examples of some well-known supervised and unsupervised learning techniques using three different and popular coding platforms: R, Python, and Java. This book explains some of the most popular classification techniques (K-NN, Naïve Bayes, Decision tree, Random forest, Support vector machine etc,) along with the basic description of artificial neural network and deep neural network. The book is useful for professionals, students studying data mining and machine learning, and researchers in supervised and unsupervised learning techniques.




Innovations, Securities, and Case Studies Across Healthcare, Business, and Technology


Book Description

The longstanding practice of keeping academic disciplines separate has been a barrier to effectively addressing the complex challenges in our world. The boundaries separating fields like healthcare, social sciences, and technology have obscured the potential for interdisciplinary collaboration, preventing us from unlocking innovative solutions to the most pressing issues of our time. As a result, the critical problems we face, from healthcare inequities to technological advancements with ethical dilemmas, have remained largely unresolved. This fragmented approach to academic inquiry has left a void in our quest to tackle these challenges effectively. The solution is found within the pages of Innovations, Securities, and Case Studies Across Healthcare, Business, and Technology. This groundbreaking compendium illuminates the transformative potential of interdisciplinary collaboration, offering direction and support in the form of knowledge for scholars, researchers, practitioners, and students committed to solving real-world problems. By harnessing the collective wisdom of diverse disciplines, the book demonstrates how convergence across healthcare, social sciences, organizational behavior, and technology can lead to groundbreaking insights and solutions. It showcases success stories and innovative strategies that drive positive change within our societies, offering a roadmap towards a brighter, more interconnected future.




EEG Signal Analysis and Classification


Book Description

This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developed methodologies that have been tested on several real-time benchmark databases. This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals. /div




XXVI Brazilian Congress on Biomedical Engineering


Book Description

This volume presents the proceedings of the Brazilian Congress on Biomedical Engineering (CBEB 2018). The conference was organised by the Brazilian Society on Biomedical Engineering (SBEB) and held in Armação de Buzios, Rio de Janeiro, Brazil from 21-25 October, 2018. Topics of the proceedings include these 11 tracks: • Bioengineering • Biomaterials, Tissue Engineering and Artificial Organs • Biomechanics and Rehabilitation • Biomedical Devices and Instrumentation • Biomedical Robotics, Assistive Technologies and Health Informatics • Clinical Engineering and Health Technology Assessment • Metrology, Standardization, Testing and Quality in Health • Biomedical Signal and Image Processing • Neural Engineering • Special Topics • Systems and Technologies for Therapy and Diagnosis




Applying AI-Based IoT Systems to Simulation-Based Information Retrieval


Book Description

Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.