Neurotransmitter Actions in the Vertebrate Nervous System


Book Description

Intercellular communication via bioactive substances occurs in virtually all multicellular systems. Chemical neurotransmission in the vertebrate nervous system represents a form of signaling of this type. The biology of chemical neurotransmission is complex, involving transmitter synthesis, transport, and release by the presynaptic neuron; signal generation in the target tissue; and mechanisms for termination of the response. The focus of this book is on one aspect of this scheme: the diverse electrophysiological effects induced by different neurotransmitters on targets cells. In recent years, astonishing progress has been made in elucidating the specific physiological signals mediated by neurotransmitters in the verte brate nervous system, yet, in our view, this has not been adequately recog nized, perhaps because the new concepts have yet to filter into neuroscience textbooks. Nevertheless, the principles of neurotransmitter action are critical to advances in many areas of neuroscience, including molecular neurobiol ogy, neurochemistry, neuropharmacology, physiological psychology, and clinical neuroscience. It was the need for a sourcebook that prompted us to engage a group of neurophysiologists to prepare the chapters in this volume. However, there was an additional reason for this book: more and more it seemed that the field, if not yet having reached maturity, at least was ap proaching adolescence, with strengths in some areas and healthy conflicts in others. At this stage of development a textbook can help to define a field, clarify problems to be resolved, and identify areas for future investigation.




Webvision


Book Description




Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System


Book Description

Glutamate is the most pervasive neurotransmitter in the central nervous system (CNS). Despite this fact, no validated biological markers, or biomarkers, currently exist for measuring glutamate pathology in CNS disorders or injuries. Glutamate dysfunction has been associated with an extensive range of nervous system diseases and disorders. Problems with how the neurotransmitter glutamate functions in the brain have been linked to a wide variety of disorders, including schizophrenia, Alzheimer's, substance abuse, and traumatic brain injury. These conditions are widespread, affecting a large portion of the United States population, and remain difficult to treat. Efforts to understand, treat, and prevent glutamate-related disorders can be aided by the identification of valid biomarkers. The Institute of Medicine's Forum on Neuroscience and Nervous System Disorders held a workshop on June 21-22, 2010, to explore ways to accelerate the development, validation, and implementation of such biomarkers. Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary investigates promising current and emerging technologies, and outlines strategies to procure resources and tools to advance drug development for associated nervous system disorders. Moreover, this report highlights presentations by expert panelists, and the open panel discussions that occurred during the workshop.




Discovering the Brain


Book Description

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."




Environmental Neurotoxicology


Book Description

Scientists agree that exposure to toxic agents in the environment can cause neurological and psychiatric illnesses ranging from headaches and depression to syndromes resembling parkinsonism. It can even result in death at high exposure levels. The emergence of subclinical neurotoxicity-the concept that long-term impairments can escape clinical detection-makes the need for risk assessment even more critical. This volume paves the way toward definitive solutions, presenting the current consensus on risk assessment and environmental toxicants and offering specific recommendations. The book covers: The biologic basis of neurotoxicity. Progress in the application of biologic markers. Reviews of a wide range of in vitro and in vivo testing techniques. The use of surveillance and epidemiology to identify neurotoxic hazards that escape premarket screening. Research needs. This volume will be an important resource for policymakers, health specialists, researchers, and students.




Biochemistry of Characterised Neurons


Book Description

Biochemistry of Characterised Neurons provides a report on the progress made in the analysis of the biology of specific neurons in the central nervous system. This book emphasizes the biochemical, morphological, and functional aspects of characterized neurons, including ways and sophisticated techniques of isolating them. This publication is divided into 11 chapters. The first chapter evaluates the relevance of working with single neurons. Chapters 2 to 6 discuss specific, characterized, invertebrate neurons containing one of the putative neurotransmitter substances. Chapter 7 deals with the biochemistry of a unique vertebrate (Torpedo) cholinergic system that enables pure cholinergic neuronal cell bodies and endings to be analyzed separately. The sensitive radiochemical procedures used to analyze transmitter substances and transmitter enzymes, and how they can be adapted to map the distribution of transmitters in individual neurons of Aplysia, are discussed in Chapter 8. Chapter 9 describes methods for the analysis of specific cells in the retina, while Chapters 10 and 11 focus on the analysis of proteins within defined neurons. This text is beneficial to biochemists and students interested in analyzing neurons.




The Neuron


Book Description

Intended for use by advanced undergraduate, graduate and medical students, this book presents a study of the unique biochemical and physiological properties of neurons, emphasising the molecular mechanisms that generate and regulate their activity.




Biology for AP ® Courses


Book Description

Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.




Micro-, Meso- and Macro-Dynamics of the Brain


Book Description

This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress and address future developments. The individual chapters cover several fascinating facets of contemporary neuroscience from elementary computation of neurons, mesoscopic network oscillations, internally generated assembly sequences in the service of cognition, large-scale neuronal interactions within and across systems, the impact of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-scale computation and consciousness. Each of these topics require appropriate levels of analyses with sufficiently high temporal and spatial resolution of neuronal activity in both local and global networks, supplemented by models and theories to explain how different levels of brain dynamics interact with each other and how the failure of such interactions results in neurologic and mental disease. While such complex questions cannot be answered exhaustively by a dozen or so chapters, this volume offers a nice synthesis of current thinking and work-in-progress on micro-, meso- and macro- dynamics of the brain.




GABA in the Nervous System


Book Description

GABA in the Nervous System summarizes recent advances in understanding the role of GABA as a neurotransmitter. First discovered as an inhibitory signal in 1950, GABA may also fulfill a decisive role in diseases such as Parkinson's and Alzheimer's, stroke, and other clinical problems. This book provides a comprehensive understanding of GABA at both the molecular and systemic level. Each chapter provides a balanced view of current knowledge while referencing historical discoveries during the last half-century