NMR micro-detectors tailored for multinuclear and electrochemistry lab-on-a-chip applications


Book Description

This work offers three solutions tailored to specific applications to overcome NMR challenges in the micro-domain. As the first sub-topic of this work, different potential electrode designs, compatible with NMR technique, are suggested and experimentally evaluated. As the second focus point, this work tackles multinuclear detection challenges. In parallel, a low-cost, broadband insert is discussed to enhance the sensitivity of standard NMR coils when a small sample volume is available.




Holographic Sensors


Book Description

This thesis presents a theoretical and experimental approach for the rapid fabrication, optimization and testing of holographic sensors for the quantification of pH, organic solvents, metal cations, and glucose in solutions. Developing non-invasive and reusable diagnostics sensors that can be easily manufactured will support the monitoring of high-risk individuals in any clinical or point-of-care setting. Sensor fabrication approaches outlined include silver-halide chemistry, laser ablation and photopolymerization. The sensors employ off-axis Bragg diffraction gratings of ordered silver nanoparticles and localized refractive index changes in poly (2-hydroxyethyl methacrylate) and polyacrylamide films. The sensors exhibited reversible Bragg peak shifts, and diffracted the spectrum of narrow-band light over the wavelength range λpeak ≈ 495-1100 nm. Clinical trials of glucose sensors in the urine samples of diabetic patients demonstrated that they offer superior performance compared to commercial high-throughput urinalysis devices. Lastly, a generic smartphone application to quantify colorimetric tests was developed and tested for both Android and iOS operating systems. The sensing platform and smartphone application may have implications for the development of low-cost, reusable and equipment-free point-of-care diagnostic devices.




Compact NMR


Book Description

The goal of this book is to provide an introduction to the practical use of mobile NMR at a level as basic as the operation of a smart phone. Each description follows the same didactic pattern: introduction, basic theory, pulse sequences and parameters, beginners-level measurements, advanced-level measurements, and data processing. Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue depicting the brain function and the beating heart. In both applications large super-conducting magnets are employed which magnetize atomic nuclei of an object positioned inside the magnet. Their circulating motion is interrogated by radio-frequency waves. Depending on the operating mode, the frequency spectrum provides the chemist with molecular information, the medical doctor with anatomic images, while the materials scientist is interested in NMR relaxation parameters, which scale with material properties and determine the contrast in magnetic resonance images. Recent advances in magnet technology led to a variety of small permanent magnets, by which NMR spectra, images, and relaxation parameters can be measured with mobile and low-cost instruments.




Electrochemical Nanotechnologies


Book Description

In this book, the term "electrochemical nanotechnology" is defined as nanoprocessing by means of electrochemical techniques. This introductory book reviews the application of electrochemical nanotechnologies with the aim of understanding their wider applicability in evolving nanoindustries. These advances have impacted microelectronics, sensors, materials science, and corrosion science, generating new fields of research that promote interaction between biology, medicine, and microelectronics. This volume reviews nanotechnology applications in selected high technology areas with particular emphasis on advances in such areas. Chapters are classified under four different headings: Nanotechnology for energy devices - Nanotechnology for magnetic storage devices - Nanotechnology for bio-chip applications - Nanotechnology for MEMS/Packaging.




Frontiers in Chemical Engineering


Book Description

In the next 10 to 15 years, chemical engineers have the potential to affect every aspect of American life and promote the scientific and industrial leadership of the United States. Frontiers in Chemical Engineering explores the opportunities available and gives a blueprint for turning a multitude of promising visions into realities. It also examines the likely changes in how chemical engineers will be educated and take their place in the profession, and presents new research opportunities.




NanoBioEngineering


Book Description

The objective of this book is to provide the fundamental comprehension of a broad range of topics in an integrated volume such that readership hailing from diverse disciplines can rapidly acquire the necessary background for applying it in pertinent research and development field.




Encyclopedia of Biology


Book Description

Contains approximately 800 alphabetical entries, prose essays on important topics, line illustrations, and black-and-white photographs.




Electrochemical Nanotechnology


Book Description

A new window to local studies of interface phenomena at solid state surfaces has been opened by the development of local probe techniques such as Scanning Tunneling Microscopy (STM) or Atomic Force Microscopy (AFM) and related methods during the past fifteen years. The in-situ application of local probe methods in different systems belongs to modern nanotechnology and has two aspects: an analytical aspect and a preparative aspect. The first aspect covers the application of the local probe methods to characterize thermodynamic, structural and dynamic properties of solid state surfaces and interfaces and to investigate local surface reactions. Two methods which are still in the beginning of their development represent the second aspect: tip and cantilever. They can be used to form defined nano-objects such as molecular or atomic clusters, quantum dots etc. as well as to structure or modify solid state surfaces in the nanometer range. This IUPAC monograph is a comprehensive treatment of both aspects and presents the current state of knowledge. It is written for scientists active in the area of nanotechnology.




Luminescence Thermometry


Book Description

Luminescence Thermometry: Methods, Materials, and Applications presents the state-of-the art applications of luminescence thermometry, giving a detailed explanation of luminescence spectroscopic schemes for the read-out of temperature, while also describing the diverse materials that are capable of sensing temperature via luminescence. Chapters cover the fundamentals of temperature, traditional thermometers and their figures of merit, a concise description of optical thermometry methods, luminescence and instrumentation, and an explanation of the ways in which increases in temperature quench luminescence. Additional sections focus on materials utilized for luminescence thermometry and the broad range of applications for luminescence thermometry, including temperature measurement at the nanoscale and the application of multifunctional luminescent materials. - Provides an overview of luminescence thermometry applications, including high-temperature, biomedical, nanoscale and multifunctional - Delves into luminescence thermometry by materials group, including Rare-earth and transition Metal Ion Doped, Semiconductors, Quantum Dots and Organic materials - Gives a concise introduction of the latest methods of temperature measurement, including luminescence spectroscopic schemes and methods of analysis




Materials Fundamentals of Gate Dielectrics


Book Description

This book presents the fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scaling of CMOS devices. As this is a rapidly evolving field of research we choose to focus on the materials that determine the performance of device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause severe integration difficulties, thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are well-known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides requires the use of state-of-the-art first-principles calculations. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discontinuity within the framework of the density functional theory. Experimental methods include oxide melt solution calorimetry and differential scanning calorimetry, Raman scattering and other optical characterization techniques, transmission electron microscopy, and X-ray photoelectron spectroscopy. Many of the problems encountered in the world of CMOS are also relevant for other semiconductors such as GaAs. A comprehensive review of recent developments in this field is thus also given.