Nonlinear Wave Methods for Charge Transport


Book Description

The present book introduces and develops mathematical techniques for the treatment of nonlinear waves and singular perturbation methods at a level that is suitable for graduate students, researchers and faculty throughout the natural sciences and engineering. The practice of implementing these techniques and their value are largely realized by showing their application to problems of nonlinear wave phenomena in electronic transport in solid state materials, especially bulk semiconductors and semiconductor superlattices. The authors are recognized leaders in this field, with more than 30 combined years of contributions.




Electron Transport in Quantum Dots


Book Description

When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the debate of critical issues in this still developing field. In this matter, I have been assisted greatly by the excellent series of articles provided by the different authors, who are widely recognized as some of the leaders in this vital area of research.




Non-Linear Transport Properties of Hybrid Nanoelectronic Devices


Book Description

The subject of this thesis is the study of hybrid nanoelectronic components involving superconductors or excitonic systems. The behavior of such electronic devices is relevant both for the miniaturization of electronics as well as for possible future on-chip quantum computation. In order to characterise them the cumulant generating function of charge transfer is calculated. First, quantum point contacts between (conventional und unconventional) superconductors, ferromagnets and semiconductors are investigated. The focus of interest are transport processes involving non-trivial correlated electronic states such as Cooper pairs, excitons or Majorana fermions. In the second part quantum impurities are included and the effects of onsite Coulomb and electron-phonon interaction are discussed. Using these results the possibility to witness entanglement in superconducting beamsplitters is demonstrated. The results are compared both to different theoretical approaches and experimental data.




CFN Lectures on Functional Nanostructures - Volume 2


Book Description

This series of books contains selected and edited lectures from summer schools organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of topical, introductory lectures. This is reflected by both the selection of topics addressed in the present volume, nanoelectronics, as well as the tutorial aspect of the contributions.




New Materials for Thermoelectric Applications: Theory and Experiment


Book Description

Thermoelectric devices could play an important role in making efficient use of our energy resources but their efficiency would need to be increased for their wide scale application. There is a multidisciplinary search for materials with an enhanced thermoelectric responses for use in such devices. This volume covers the latest ideas and developments in this research field, covering topics ranging from the fabrication and characterization of new materials, particularly those with strong electron correlation, use of nanostructured, layered materials and composites, through to theoretical work to gain a deeper understanding of thermoelectric behavior. It should be a useful guide and stimulus to all working in this very topical field.




Quantum Dots


Book Description

This book deals with the electronic and optical properties of two low-dimensional systems: quantum dots and quantum antidots and is divided into two parts. Part one is a self-contained monograph which describes in detail the theoretical and experimental background for exploration of electronic states of the quantum-confined systems. Starting from the single-electron picture of the system, the book describes various experimental methods that provide important information on these systems. Concentrating on many-electron systems, theoretical developments are described in detail and their experimental consequences are also discussed. The field has witnessed an almost explosive growth and some of the future directions of explorations are highlighted towards the end of the monograph. The subject matter is dealt with in such a way that it is both accessible to beginners and useful for expert researchers as a comprehensive review of most of the developments in the field.Furthermore the book contains 37 reprinted articles which have been selected to provide a first-hand picture of the overall developments in the field. The early papers have been arranged to portray the developments chronologically, and the more recent papers provide an overview of future direction in the research.




Transport in Nanostructures


Book Description

The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.




Colloidal Quantum Dot Optoelectronics and Photovoltaics


Book Description

Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.




CFN Lectures on Functional Nanostructures


Book Description

This book contains a selection of lectures from the first Summer School organized by the Center for Functional nanostructures (CFN) at the University of Karlsruhe. The mission of the CFN is to carry out research in the following areas: nanophotonics, nanoelectronics, molecular nanostructures and nanostructured materials. The aim of the summer schools is mainly to exchange new ideas and illustrate emerging research methodologies through a series of lectures. This is reflected by both the selection of topics addressed in the present volume as well as the tutorial aspect of the contributions.




Nanocrystal Quantum Dots


Book Description

A review of recent advancements in colloidal nanocrystals and quantum-confined nanostructures, Nanocrystal Quantum Dots is the second edition of Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, originally published in 2003. This new title reflects the book’s altered focus on semiconductor nanocrystals. Gathering contributions from leading researchers, this book contains new chapters on carrier multiplication (generation of multiexcitons by single photons), doping of semiconductor nanocrystals, and applications of nanocrystals in biology. Other updates include: New insights regarding the underlying mechanisms supporting colloidal nanocrystal growth A revised general overview of multiexciton phenomena, including spectral and dynamical signatures of multiexcitons in transient absorption and photoluminescence Analysis of nanocrystal-specific features of multiexciton recombination A review of the status of new field of carrier multiplication Expanded coverage of theory, covering the regime of high-charge densities New results on quantum dots of lead chalcogenides, with a focus studies of carrier multiplication and the latest results regarding Schottky junction solar cells Presents useful examples to illustrate applications of nanocrystals in biological labeling, imaging, and diagnostics The book also includes a review of recent progress made in biological applications of colloidal nanocrystals, as well as a comparative analysis of the advantages and limitations of techniques for preparing biocompatible quantum dots. The authors summarize the latest developments in the synthesis and understanding of magnetically doped semiconductor nanocrystals, and they present a detailed discussion of issues related to the synthesis, magneto-optics, and photoluminescence of doped colloidal nanocrystals as well. A valuable addition to the pantheon of literature in the field of nanoscience, this book presents pioneering research from experts whose work has led to the numerous advances of the past several years.