Introduction to Octonion and Other Non-Associative Algebras in Physics


Book Description

In this book, the author aims to familiarize researchers and graduate students in both physics and mathematics with the application of non-associative algebras in physics.Topics covered by the author range from algebras of observables in quantum mechanics, angular momentum and octonions, division algebra, triple-linear products and YangSHBaxter equations. The author also covers non-associative gauge theoretic reformulation of Einstein's general relativity theory and so on. Much of the material found in this book is not available in other standard works.







Non-Associative Algebra and Its Applications


Book Description

With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences.




Noncommutative Geometry and Particle Physics


Book Description

This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.




Relation Algebras by Games


Book Description

In part 2, games are introduced, and used to axiomatise various classes of algebras. Part 3 discusses approximations to representability, using bases, relation algebra reducts, and relativised representations. Part 4 presents some constructions of relation algebras, including Monk algebras and the 'rainbow construction', and uses them to show that various classes of representable algebras are non-finitely axiomatisable or even non-elementary. Part 5 shows that the representability problem for finite relation algebras is undecidable, and then in contrast proves some finite base property results. Part 6 contains a condensed summary of the book, and a list of problems. There are more than 400 exercises. P The book is generally self-contained on relation algebras and on games, and introductory text is scattered throughout. Some familiarity with elementary aspects of first-order logic and set theory is assumed, though many of the definitions are given.-




Malcev-Admissible Algebras


Book Description




Geometry of State Spaces of Operator Algebras


Book Description

In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.




Division Algebras:


Book Description

I don't know who Gigerenzer is, but he wrote something very clever that I saw quoted in a popular glossy magazine: "Evolution has tuned the way we think to frequencies of co-occurances, as with the hunter who remembers the area where he has had the most success killing game." This sanguine thought explains my obsession with the division algebras. Every effort I have ever made to connect them to physics - to the design of reality - has succeeded, with my expectations often surpassed. Doubtless this strong statement is colored by a selective memory, but the kind of game I sought, and still seek, seems to frowst about this particular watering hole in droves. I settled down there some years ago and have never feIt like Ieaving. This book is about the beasts I selected for attention (if you will, to ren der this metaphor politically correct, let's say I was a nature photographer), and the kind of tools I had to develop to get the kind of shots Iwanted (the tools that I found there were for my taste overly abstract and theoretical). Half of thisbook is about these tools, and some applications thereof that should demonstrate their power. The rest is devoted to a demonstration of the intimate connection between the mathematics of the division algebras and the Standard Model of quarks and leptons with U(l) x SU(2) x SU(3) gauge fields, and the connection of this model to lO-dimensional spacetime implied by the mathematics.




Associative and Non-Associative Algebras and Applications


Book Description

This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.




Lie Algebras, Vertex Operator Algebras, and Related Topics


Book Description

This volume contains the proceedings of the conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, celebrating the 70th birthday of James Lepowsky and Robert Wilson, held from August 14–18, 2015, at the University of Notre Dame, Notre Dame, Indiana. Since their seminal work in the 1970s, Lepowsky and Wilson, their collaborators, their students, and those inspired by their work, have developed an amazing body of work intertwining the fields of Lie algebras, vertex algebras, number theory, theoretical physics, quantum groups, the representation theory of finite simple groups, and more. The papers presented here include recent results and descriptions of ongoing research initiatives representing the broad influence and deep connections brought about by the work of Lepowsky and Wilson and include a contribution by Yi-Zhi Huang summarizing some major open problems in these areas, in particular as they pertain to two-dimensional conformal field theory.