Dynamic Methods for Damage Detection in Structures


Book Description

Non destructive testing aimed at monitoring, structural identification and di- nostics is of strategic importance in many branches of civil and mechanical - gineering. This type of tests is widely practiced and directly affects topical issues regarding the design of new buildings and the repair and monitoring of existing ones. The load bearing capacity of a structure can now be evaluated using well established mechanical modelling methods aided by computing facilities of great capability. However, to ensure reliable results, models must be calibrated with - curate information on the characteristics of materials and structural components. To this end, non destructive techniques are a useful tool from several points of view. Particularly, by measuring structural response, they provide guidance on the validation of structural descriptions or of the mathematical models of material behaviour. Diagnostic engineering is a crucial area for the application of non destructive testing methods. Repeated tests over time can indicate the emergence of p- sible damage occurring during the structure's lifetime and provide quantitative estimates of the level of residual safety.







Advanced Structural Damage Detection


Book Description

Structural Health Monitoring (SHM) is the interdisciplinary engineering field devoted to the monitoring and assessment of structural health and integrity. SHM technology integrates non-destructive evaluation techniques using remote sensing and smart materials to create smart self-monitoring structures characterized by increased reliability and long life. Its applications are primarily systems with critical demands concerning performance where classical onsite assessment is both difficult and expensive. Advanced Structural Damage Detection: From Theory to Engineering Applications is written by academic experts in the field and provides students, engineers and other technical specialists with a comprehensive review of recent developments in various monitoring techniques and their applications to SHM. Contributing to an area which is the subject of intensive research and development, this book offers both theoretical principles and feasibility studies for a number of SHM techniques. Key features: Takes a multidisciplinary approach and provides a comprehensive review of main SHM techniques Presents real case studies and practical application of techniques for damage detection in different types of structures Presents a number of new/novel data processing algorithms Demonstrates real operating prototypes Advanced Structural Damage Detection: From Theory to Engineering Applications is a comprehensive reference for researchers and engineers and is a useful source of information for graduate students in mechanical and civil engineering




System and Damage Identification of Civil Structures


Book Description

In recent years, structural health monitoring has received increasing attention in the civil engineering research community with the objective to identify structural damage at the earliest possible stage and evaluate the remaining useful life (damage prognosis) of structures. Vibration-based, non-destructive damage identification is based on changes in dynamic characteristics (e.g., modal parameters) of a structure for identifying structural damage. Experimental modal analysis (EMA) has been used as a technology for identifying modal parameters of a structure based on its measured vibration data. It should be emphasized that the success of damage identification based on EMA depends strongly on the accuracy and completeness of the identified structural dynamic properties. The objective of the research work presented in this thesis is to develop new, and improve/extend existing system identification and damage identification methods for vibration based structural health monitoring. In the first part of the thesis, a new system identification method is developed to identify modal parameters of linear dynamic systems subjected to measured (known) arbitrary dynamic loading from known initial conditions. In addition, a comparative study is performed to investigate the performance of several state-of-the-art input-output and output-only system identification methods when applied to actual large structural components and systems. In the second part of the thesis, a finite element model updating strategy, a sophisticated damage identification method, is formulated and computer implemented. This method is then successfully applied for damage identification of two large test structures, namely a full-scale sub-component composite beam and a full-scale seven-story R/C building slice, at various damage levels. The final part of the thesis investigates, based on numerical response simulation of the seven-story building slice, the effects of the variability/uncertainty of several input factors on the variability/uncertainty of system identification and damage identification results. The results of this investigation demonstrate that the level of confidence in the damage identification results obtained through FE model updating is a function of not only the level of uncertainty in the identified modal parameters, but also choices made in the design of experiments (e.g., spatial density of measurements) and modeling errors (e.g., mesh size).




Nondestructive Level III Damage Evaluation and System Identification in Structures Based on the Rate of the Total Energy


Book Description

Nondestructive damage detection methods provide beneficiary bases for planning an economical maintenance program for structures. Economically, detecting and repairing structural damages in their initial stage is desirable, and moreover it may prevent occurrences of disastrous losses especially in areas susceptible to hazardous loads such as earthquakes. Therefore, development of a general damage detection method that alarms degradations of structural properties is of interest. In this dissertation, a level III non-destructive damage evaluation method, called DITER, is developed based on tracking the rate of the mechanical energy of a structural system. The objective is to simultaneously detect and size variations in the element-wise mass, stiffness, and damping characteristics of a structure, utilizing dynamic response data of the system. The effect of the proportional and non-proportional types of the inherent damping of the structure in the form of viscous resistance to strain of the material and Rayleigh damping, as well as the effect of passive seismic protective devices are considered in the method. Moreover, an iterative algorithm is proposed for the cases with missing load data A sub-system approach is developed to make DITER applicable to a specific part of a structure. The advantages of this approach are limiting the excitations to the interested area only, and making DITER an appropriate option for structures with seismic protective systems. While the method is applicable to a general structure, in this dissertation, it is explicitly developed for shear building models as well as for two-dimensional beams and frames. To address the geometrical non-linearity, an extended version of DITER is developed employing von Kármán nonlinearity. Several numerical verifications are presented to study the DITER performance under different types of supports, loadings, and damping characteristics as well as to consider the effects of the type, intensity, and geometry of the imposed damages. In addition, dynamic properties of a three-story office building are used to experimentally verify the DITER ability in detecting deteriorations in the structural stiffness. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/155085




Advances in Non Destructive Evaluation


Book Description

This book comprises the proceedings of the Conference and Exhibition on Non Destructive Evaluation (NDE 2020). The contents of the volume encompass a vast spectrum from Conventional to Advanced NDE including novel methods, instrumentation, sensors, procedures, and data analytics as applied to all industry segments for quality control, periodic maintenance, life estimation, structural integrity and related areas. This book will be a useful reference for students, researchers and practitioners.




Deep Learning Applications, Volume 2


Book Description

This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.




Structural Health Monitoring and Detection of Progressive and Existing Damage Using Artificial Neural Networks-Based System Identification


Book Description

In recent decades, the growing number of civil and aerospace structures has accelerated the development of damage detection and health monitoring approaches. Many are based upon non-destructive and non-invasive sensing and analysis of structural characteristics, and most use structural response information to identify the existence, location, and time of damage. Model based techniques such as parametric and non-parametric system identification seek to identify changes in the parameters of a dynamic structural model. Restoring forces in real structures can exhibit highly non-linear characteristics, thus accurate non-linear system identification is critical. Parametric system identification approaches are commonly used, but these require a priori assumptions about restoring force characteristics. Non-parametric approaches do not require such information, but they typically lack direct associations between the model and the structural dynamics, providing limited utility for accurate health monitoring and damage detection. This dissertation presents a novel 'Intelligent Parameter Varying' (IPV) health monitoring and damage detection technique that accurately detects the existence, location, and time of damage occurrence without any assumptions about the constitutive nature of structural non-linearities. This technique combines the advantages of parametric techniques with the non-parametric capabilities of artificial neural networks by incorporating artificial neural networks into a traditional parametric model. This hybrid approach benefits from the effectiveness of traditional modeling approaches and from the adaptation and learning capabilities of artificial neural networks. The generality of this IPV approach makes it suitable to a wide range of dynamic systems, including those with non-linear and time-varying characteristics. This IPV technique is demonstrated using a lumped-mass structural model with an embedded array of artificial neural networks. These networks i.




Modal Analysis and Testing


Book Description

Proceedings of the NATO Advanced Study Institute, Sesimbra, Portugal, 3-15 May, 1998