Similitude for Normal Shock Waves in Nonequilibrium Flows


Book Description

Similarity parameters are developed which govern the length of nonequilibrium zones behind normal shock waves. Non-equilibrium effects produced by both vibrational relaxation and dissociation are considered. The parameters can also account for arbitrary levels of free-stream vibrational energy or dissociation level. The validity of the parameters is examined using numerical computations of the properties of the non-equilibrium fields. These computations are made with the aid of experimentally based rate expressions. The parameters, when written in a form describing the variation of non-equilibrium zone length with Mach number, are shown to have acceptable accuracy. (Author).




Nonequilibrium Flows


Book Description




Non-Equilibrium Reacting Gas Flows


Book Description

In the present monograph, we develop the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures and discuss its applications to strongly non-equilibrium conditions. The main attention is focused on the influence of non-equilibrium kinetics on gas dynamics and transport properties. Closed systems of fluid dynamic equations are derived from the kinetic equations in different approaches. We consider the most accurate approach taking into account the state-to-state kinetics in a flow, as well as simplified multi-temperature and one-temperature models based on quasi-stationary distributions. Within these approaches, we propose the algorithms for the calculation of the transport coefficients and rate coefficients of chemical reactions and energy exchanges in non-equilibrium flows; the developed techniques are based on the fundamental kinetic theory principles. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles. The comparison of the results obtained within the frame of different approaches is presented, the advantages of the new state-to-state kinetic model are discussed, and the limits of validity for simplified models are established. The book can be interesting for scientists and graduate students working on physical gas dynamics, aerothermodynamics, heat and mass transfer, non-equilibrium physical-chemical kinetics, and kinetic theory of gases.




Nonequilibrium Flows


Book Description




Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows


Book Description

This book is concerned with the methods of solving the nonlinear Boltz mann equation and of investigating its possibilities for describing some aerodynamic and physical problems. This monograph is a sequel to the book 'Numerical direct solutions of the kinetic Boltzmann equation' (in Russian) which was written with F. G. Tcheremissine and published by the Computing Center of the Russian Academy of Sciences some years ago. The main purposes of these two books are almost similar, namely, the study of nonequilibrium gas flows on the basis of direct integration of the kinetic equations. Nevertheless, there are some new aspects in the way this topic is treated in the present monograph. In particular, attention is paid to the advantages of the Boltzmann equation as a tool for considering nonequi librium, nonlinear processes. New fields of application of the Boltzmann equation are also described. Solutions of some problems are obtained with higher accuracy. Numerical procedures, such as parallel computing, are in vestigated for the first time. The structure and the contents of the present book have some com mon features with the monograph mentioned above, although there are new issues concerning the mathematical apparatus developed so that the Boltzmann equation can be applied for new physical problems. Because of this some chapters have been rewritten and checked again and some new chapters have been added.










Nonequilibrium Condensation in High-speed Gas Flows


Book Description

A translation of the 1984 Russian work. Nonequlibrium condensation is an important aspect of weather forecasting, aerosol formation, and the design of jet propulsion engines, steam turbines and nuclear reactors. It has recently taken on a new significance with the development of technologies such as the production of fine powders, cluster spraying, the development of laser media and isotope separation. This volume presents the general theory of condensation in high-speed gas flows, and the new theoretical, experimental and numerical methods necessary for solving the partial differential equations governing the flows. Annotation copyrighted by Book News, Inc., Portland, OR




Nonequilibrium Gas Dynamics and Molecular Simulation


Book Description

7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index




A Thin-shock-layer Solution for Nonequilibrium, Inviscid Hypersonic Flows in Earth, Martian, and Venusian Atmospheres


Book Description

An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Martian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.