Nonequilibrium Vibrational Kinetics


Book Description

This book is devoted to the systematic treatment of nonequi 1 ibrium vibrational kinetics in molecular systems. Particular emphasis is given to the vibrational excitation of diatomic molecules by low-energy electrons in a discharge and by IR photons in laser-pumped systems. The book follows the different steps of the introduction, redistribution, loss, and chemical conversion of the vibrational quanta, from the points of view of the overall kinetics and the dynamics of elementary processes. These two aspects are balanced in a multidisciplinary approach. The different chapters give the basic instruments (theoretical and experimental) which are needed to understand the ki netics of nonequilibrium systems. The book will introduce the reader to different areas such as plasmachemistry, laser chemistry, IR and Raman spectroscopy, and relaxation phenomena, emphasizing how the vibrational energy affects such research fields. The chapters dedicated to collisional dynamics involving vibrational excited molecules provide an introduc tion to the modern techniques uti 1 ized in the scattering theory of inelastic and reactive collisions. The extension of the vibrational kinetics to polyatomic mole cules, discussed in Chap. 10, is the natural bridge between coll ision and coll i sionless regimes. In conclusion, we hope that the approach followed in this book will stimulate the collaboration of researchers coming from different research fields, which are too often completely separate.




Non-Equilibrium Reacting Gas Flows


Book Description

In the present monograph, we develop the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures and discuss its applications to strongly non-equilibrium conditions. The main attention is focused on the influence of non-equilibrium kinetics on gas dynamics and transport properties. Closed systems of fluid dynamic equations are derived from the kinetic equations in different approaches. We consider the most accurate approach taking into account the state-to-state kinetics in a flow, as well as simplified multi-temperature and one-temperature models based on quasi-stationary distributions. Within these approaches, we propose the algorithms for the calculation of the transport coefficients and rate coefficients of chemical reactions and energy exchanges in non-equilibrium flows; the developed techniques are based on the fundamental kinetic theory principles. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles. The comparison of the results obtained within the frame of different approaches is presented, the advantages of the new state-to-state kinetic model are discussed, and the limits of validity for simplified models are established. The book can be interesting for scientists and graduate students working on physical gas dynamics, aerothermodynamics, heat and mass transfer, non-equilibrium physical-chemical kinetics, and kinetic theory of gases.




Nonequilibrium Processes in Partially Ionized Gases


Book Description

The NATO . Advanced Research Insti tute on Nonequilibrium Processes in Partially Ionized Gases was held at Acquafredda di Maratea during 4-17 June 1989. The Institute considered the interconnections between scattering and transport theories and modeling of nonequilibrium systems generated by electrical discharges, emphasizing the importance of microscopic processes in affecting the bulk properties of plasmas. The book tries to reproduce these lines. In particular several contributions describe scattering cross sections involving electrons interacting with atoms and molecules in both ground and excited states (from theoretical and experimental point of view), of energy transfer processes as well as reactive ones involving excited molecules colliding with atoms and molecules as well as with metallic surfaces. Other contributions deal with the basis of transport theories (Boltzmann and Monte Carlo methods) for describing the bulk properties of non equilibrium plasmas as well as with the modeling of complicated systems emphasizing in particular the strong coupling between the Boltzmann equation and excited state kinetics. Finally the book contains several contributions describing applications in different fields such as Excimer Lasers, Negative Ion Production, RF Discharges, Plasma Chemistry, Atmospheric Processes and Physics of Lamps. The Organizing Committee gratefully acknowledges the generous financial support provided by the NATO Science Committee as well as by Azienda Autonoma di Soggiorno e Turismo of Maratea, by University of Bari, by C. N. R. (Centro di Studio per la Chimica dei Plasmi and Comitato per la Chimica), by ENEA, by Lawrence Livermore Laboratory and by US Army Research Office.




Plasma Kinetics in Atmospheric Gases


Book Description

Emphasis is placed on the analysis of translational, rotational, vibrational and electronically excited state kinetics, coupled to the electron Boltzmann equation.




Classic and High-Enthalpy Hypersonic Flows


Book Description

Classic and High-Enthalpy Hypersonic Flows presents a complete look at high-enthalpy hypersonic flow from a review of classic theories to a discussion of future advances centering around the Born-Oppenheim approximation, potential energy surface, and critical point for transition. The state-of-the-art hypersonic flows are defined by a seamless integration of the classic gas dynamic kinetics with nonequilibrium chemical kinetics, quantum transitions, and radiative heat transfer. The book is intended for graduate students studying advanced aerodynamics and taking courses in hypersonic flow. It can also serve as a professional reference for practicing aerospace and mechanical engineers of high-speed aerospace vehicles and propulsion system research, design, and evaluation. Features Presents a comprehensive review of classic hypersonic flow from the Newtonian theory to blast wave analogue. Introduces nonequilibrium chemical kinetics to gas dynamics for hypersonic flows in the high-enthalpy state. Integrates quantum mechanics to high-enthalpy hypersonic flows including dissociation and ionization. Covers the complete heat transfer process with radiative energy transfer for thermal protection of earth reentry vehicle. Develops and verifies the interdisciplinary governing equations for understanding and analyzing realistic hypersonic flows.




Plasma Science and Technology


Book Description

Plasma Science and Technology An accessible introduction to the fundamentals of plasma science and its applications In Plasma Science and Technology: Lectures in Physics, Chemistry, Biology, and Engineering, distinguished researcher Dr. Alexander Fridman delivers a comprehensive introduction to plasma technology, including fulsome descriptions of the fundamentals of plasmas and discharges. The author discusses a wide variety of practical applications of the technology to medicine, energy, catalysis, coatings, and more, emphasizing engineering and science fundamentals. Offering readers illuminating problems and concept questions to support understanding and self-study, the book also details organic and inorganic applications of plasma technologies, demonstrating its use in nature, in the lab, and in both novel and well-known applications. Readers will also find: A thorough introduction to the kinetics of excited atoms and molecules Comprehensive explorations of non-equilibrium atmospheric pressure cold discharges Practical discussions of plasma processing in microelectronics and other micro-technologies Expert treatments of plasma in environmental control technologies, including the cleaning of air, exhaust gases, water, and soil Perfect for students of chemical engineering, physics, and chemistry, Plasma Science and Technology will also benefit professionals working in these fields who seek a contemporary refresher in the fundamentals of plasma science and its applications.




30th International Symposium on Shock Waves 1


Book Description

These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference for the participants of the ISSW30 and anyone interested in these fields.




Plasma Physics and Engineering


Book Description

Plasma plays an important role in a wide variety of industrial processes, including material processing, environmental control, electronic chip manufacturing, light sources, and green energy, not to mention fuel conversion and hydrogen production, biomedicine, flow control, catalysis, and space propulsion. Following the general outline of the bests




Molecular Physics and Hypersonic Flows


Book Description

Molecular Physics and Hypersonic Flows bridges the gap between the fluid dynamics and molecular physics communities, emphasizing the role played by elementary processes in hypersonic flows. In particular, the work is primarily dedicated to filling the gap between microscopic and macroscopic treatments of the source terms to be inserted in the fluid dynamics codes. The first part of the book describes the molecular dynamics of elementary processes both in the gas phase and in the interaction with surfaces by using quantum mechanical and phenomenological approaches. A second group of contributions describes thermodynamics and transport properties of air components, with special attention to the transport of internal energy. A series of papers is devoted to the experimental and theoretical study of the flow of partially ionized gases. Subsequent contributions treat modern computational techniques for 3-D hypersonic flow. Non-equilibrium vibrational kinetics are then described, together with the coupling of vibration-dissociation processes as they affect hypersonic flows. Special emphasis is given to the interfacing of non-equilibrium models with computational fluid dynamics methods. Finally, the last part of the book deals with the application of direct Monte Carlo methods in describing rarefied flows.




Plasma Chemistry


Book Description

Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.