Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices


Book Description

In Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices the contributions of the International Conference on Nonlinear Dynamics and Pattern Formation in the Natural Environment (ICPF '94) in Noordwijkerhout, held by many internationally reknown experts, are compiled. To connect the field of semiconductor physics with the theory of nonequilibrium dissipative systems, the emphasis lies on the study of localized structures, their stability and bifurcation behaviour. A point of special interest is the evolution of dynamic structures and the investigation of more complex structures arising from interactions between these structures. Possible applications of nonlinear effects and self-organization phenomena with respect to signal processing are discussed.




Nonlinear Dynamics and Chaos in Semiconductors


Book Description

The field of nonlinear dynamics and low-dimensional chaos has developed rapidly over the past twenty years. The principal advances have been in theoretical aspects but more recent applications in a wide variety of the sciences have been made. Nonlinear Dynamics and Chaos in Semiconductors is the first book to concentrate on specific physical and ex




Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors


Book Description

This book brings together concepts from semiconductor physics, nonlinear-dynamics and chaos to examine semiconductor transport phenomena.




Nonlinear Dynamics of Nanosystems


Book Description

A discussion of the fundamental changes that occur when dynamical systems from the fields of nonlinear optics, solids, hydrodynamics and biophysics are scaled down to nanosize. The authors are leading scientists in the field and each of their contributions provides a broader introduction to the specific area of research. In so doing, they include both the experimental and theoretical point of view, focusing especially on the effects on the nonlinear dynamical behavior of scaling, stochasticity and quantum mechanics. For everybody working on the synthesis and integration of nanoscopic devices who sooner or later will have to learn how to deal with nonlinear effects.




Collective Dynamics of Nonlinear and Disordered Systems


Book Description

Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.




The Physics of Traffic


Book Description

The core of ths book presents a theory developed by the author to combine the recent insight into empirical data with mathematical models in freeway traffic research based on dynamical non-linear processes.




Nonlinear Wave Methods for Charge Transport


Book Description

The present book introduces and develops mathematical techniques for the treatment of nonlinear waves and singular perturbation methods at a level that is suitable for graduate students, researchers and faculty throughout the natural sciences and engineering. The practice of implementing these techniques and their value are largely realized by showing their application to problems of nonlinear wave phenomena in electronic transport in solid state materials, especially bulk semiconductors and semiconductor superlattices. The authors are recognized leaders in this field, with more than 30 combined years of contributions.




Nonlinear Dynamics in Solids


Book Description

This volume contains the notes of lectures given at the school on "Nonlinear Dy namics in Solids" held at the Physikzentrum Bad Honnef, 2-6 October 1989 under the patronage of the Deutsche Physikalische Gesellschaft. Nonlinear dynamics has become a highly active research area, owing to many interesting developments during the last three decades in the theoretical analysis of dynamical processes in both Hamiltonian and dissipative systems. Research has been focused on a variety of problems, such as the characteristics of regular and chaotic motion in Hamiltonian dynamics, the problem of quantum chaos, the forma tion and properties of solitary spatio-temporal structures, the occurrence of strange attractors in dissipative systems, and the bifurcation scenarios leading to complex time behaviour. Until recently, predictions of the theory have been tested predominantly on insta bilities in hydrodynamic systems, where many interesting experiments have provided valuable input and have led to a fruitful interaction between experiment and theory. Fluid systems are certainly good candidates for performing clean experiments free from disturbing influences: with fluids, compared to solids, it is simpler to prepare good samples, the relevant length and time scales are in easily accessible ranges, and it is possible to do measurements "inside" the fluid, because it can be filled in after the construction of the apparatus. Further, the theory describing the macroscopic dynamics of fluids is well established and contains only very few parameters, all of which have well-known values.




Advances in Solid State Physics


Book Description

The 2001 Spring Meeting of the 65th Deutsche Physikalische Gesellschaft was held together with the 65. Physikertagung, in Hamburg, during the pe riod March 26 30 2001. With more than 3500 conference attendees, a record has again been achieved after several years of stabilisation in participation. This proves the continuing and now even increasing, attraction of solid state physics, especially for young colleagues who often discuss for the first time their scientific results in public at this meeting. More than 2600 scientific pa pers were presented orally, as well as posters, among them about 120 invited lectures from Germany and from abroad. This Volume 41 of "Advances in Solid State Physics" contains the written versions of half of the latter. We nevertheless hope that the book truly reflects the current state of the field. Amazingly enough, the majority of the papers as well as the discussions at the meeting, concentrated on the nanostructured solid state. This re flects the currently extremely intensive quest for developing the electronic and magnetic device generations of the future, which stimulates science be sides the challenge of the unknown as has always been the case since the very beginning of Solid State Physics about 100 years ago.




Hot Electrons in Semiconductors


Book Description

Under certain conditions electrons in a semiconductor become much hotter than the surrounding crystal lattice. When this happens, Ohm's Law breaks down: current no longer increases linearly with voltage and may even decrease. Hot electrons have long been a challenging problem in condensed matter physics and remain important in semiconductor research. Recent advances in technology have led to semiconductors with submicron dimensions, where electrons can be confined to two (quantum well), one (quantum wire), or zero (quantum dot) dimensions. In these devices small voltages heat electrons rapidly, inducing complex nonlinear behavior; the study of hot electrons is central to their further development. This book is the only comprehensive and up-to-date coverage of hot electrons. Intended for both established researchers and graduate students, it gives a complete account of the historical development of the subject, together with current research and future trends, and covers the physics of hot electrons in bulk and low-dimensional device technology. The contributions are from leading scientists in the field and are grouped broadly into five categories: introduction and overview; hot electron-phonon interactions and ultra-fast phenomena in bulk and two-dimensional structures; hot electrons in quantum wires and dots; hot electron tunneling and transport in superlattices; and novel devices based on hot electron transport.