Nonlinear Dynamics of Continuous Elastic Systems


Book Description

This monograph is devoted to recent advances in nonlinear dynamics of continuous elastic systems. A major part of the book is dedicated to the analysis of non-homogeneous continua, e.g. plates and shells characterized by sudden changes in their thickness, possessing holes in their bodies or/and edges, made from different materials with diverse dynamical characteristics and complicated boundary conditions. New theoretical and numerical approaches for analyzing the dynamics of such continua are presented, such as the method of added masses and the method of proper orthogonal decomposition. The presented hybrid approach leads to results that cannot be obtained by other standard theories in the field. The demonstrated methods are illustrated by numerous examples of application.




Applied Nonlinear Dynamics And Chaos Of Mechanical Systems With Discontinuities


Book Description

Rapid developments in nonlinear dynamics and chaos theory have led to publication of many valuable monographs and books. However, most of these texts are devoted to the classical nonlinear dynamics systems, for example the Duffing or van der Pol oscillators, and either neglect or refer only briefly to systems with motion-dependent discontinuities. In engineering practice a good part of problems is discontinuous in nature, due to either deliberate reasons such as the introduction of working clearance, and/or the finite accuracy of the manufacturing processes.The main objective of this volume is to provide a general methodology for describing, solving and analysing discontinuous systems. It is compiled from the dedicated contributions written by experts in the field of applied nonlinear dynamics and chaos.The main focus is on mechanical engineering problems where clearances, piecewise stiffness, intermittent contact, variable friction or other forms of discontinuity occur. Practical applications include vibration absorbers, percussive drilling of hard materials and dynamics of metal cutting.




Nonlinear Vibration with Control


Book Description

This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader themes cut across these application areas: (i) vibration suppression – or active damping – and, (ii) adaptive structures and machines. In this expanded 2nd edition, revisions include: An additional section on passive vibration control, including nonlinear vibration mounts. A more in-depth description of semi-active control, including switching and continuous schemes for dampers and other semi-active systems. A complet e reworking of normal form analysis, which now includes new material on internal resonance, bifurcation of backbone curves and stability analysis of forced responses. Further analysis of the nonlinear dynamics of cables including internal resonance leading to whirling. Additional material on the vibration of systems with impact friction. The book is accessible to practitioners in the areas of application, as well as students and researchers working on related topics. In particular, the aim is to introduce the key concepts of nonlinear vibration to readers who have an understanding of linear vibration and/or linear control, but no specialist knowledge in nonlinear dynamics or nonlinear control.




Vibrations and Waves in Continuous Mechanical Systems


Book Description

The subject of vibrations is of fundamental importance in engineering and technology. Discrete modelling is sufficient to understand the dynamics of many vibrating systems; however a large number of vibration phenomena are far more easily understood when modelled as continuous systems. The theory of vibrations in continuous systems is crucial to the understanding of engineering problems in areas as diverse as automotive brakes, overhead transmission lines, liquid filled tanks, ultrasonic testing or room acoustics. Starting from an elementary level, Vibrations and Waves in Continuous Mechanical Systems helps develop a comprehensive understanding of the theory of these systems and the tools with which to analyse them, before progressing to more advanced topics. Presents dynamics and analysis techniques for a wide range of continuous systems including strings, bars, beams, membranes, plates, fluids and elastic bodies in one, two and three dimensions. Covers special topics such as the interaction of discrete and continuous systems, vibrations in translating media, and sound emission from vibrating surfaces, among others. Develops the reader’s understanding by progressing from very simple results to more complex analysis without skipping the key steps in the derivations. Offers a number of new topics and exercises that form essential steppingstones to the present level of research in the field. Includes exercises at the end of the chapters based on both the academic and practical experience of the authors. Vibrations and Waves in Continuous Mechanical Systems provides a first course on the vibrations of continuous systems that will be suitable for students of continuous system dynamics, at senior undergraduate and graduate levels, in mechanical, civil and aerospace engineering. It will also appeal to researchers developing theory and analysis within the field.




Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments


Book Description

Piecewise constant systems exist in widely expanded areas such as engineering, physics, and mathematics. Extraordinary and complex characteristics of piecewise constant systems have been reported in recent years. This book provides the methodologies for analyzing and assessing nonlinear piecewise constant systems on a theoretically and practically sound basis. Recently developed approaches for theoretically analyzing and numerically solving the nonlinear piecewise constant dynamic systems are reviewed. A new greatest integer argument with a piecewise constant function is utilized for nonlinear dynamic analyses and for establishing a novel criterion in diagnosing irregular and chaotic solutions from the regular solutions of a nonlinear dynamic system. The newly established piecewise constantization methodology and its implementation in analytically solving for nonlinear dynamic problems are also presented.




Vibration of Continuous Systems


Book Description

A revised and up-to-date guide to advanced vibration analysis written by a noted expert The revised and updated second edition of Vibration of Continuous Systems offers a guide to all aspects of vibration of continuous systems including: derivation of equations of motion, exact and approximate solutions and computational aspects. The author—a noted expert in the field—reviews all possible types of continuous structural members and systems including strings, shafts, beams, membranes, plates, shells, three-dimensional bodies, and composite structural members. Designed to be a useful aid in the understanding of the vibration of continuous systems, the book contains exact analytical solutions, approximate analytical solutions, and numerical solutions. All the methods are presented in clear and simple terms and the second edition offers a more detailed explanation of the fundamentals and basic concepts. Vibration of Continuous Systems revised second edition: Contains new chapters on Vibration of three-dimensional solid bodies; Vibration of composite structures; and Numerical solution using the finite element method Reviews the fundamental concepts in clear and concise language Includes newly formatted content that is streamlined for effectiveness Offers many new illustrative examples and problems Presents answers to selected problems Written for professors, students of mechanics of vibration courses, and researchers, the revised second edition of Vibration of Continuous Systems offers an authoritative guide filled with illustrative examples of the theory, computational details, and applications of vibration of continuous systems.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials


Book Description

This book guides the reader into the modelling of shell structures in applications where advanced composite materials or complex biological materials must be described with great accuracy. A valuable resource for researchers, professionals and graduate students, it presents a variety of practical concepts, diagrams and numerical results.




Deterministic Chaos In One Dimensional Continuous Systems


Book Description

This book focuses on the computational analysis of nonlinear vibrations of structural members (beams, plates, panels, shells), where the studied dynamical problems can be reduced to the consideration of one spatial variable and time. The reduction is carried out based on a formal mathematical approach aimed at reducing the problems with infinite dimension to finite ones. The process also includes a transition from governing nonlinear partial differential equations to a set of finite number of ordinary differential equations.Beginning with an overview of the recent results devoted to the analysis and control of nonlinear dynamics of structural members, placing emphasis on stability, buckling, bifurcation and deterministic chaos, simple chaotic systems are briefly discussed. Next, bifurcation and chaotic dynamics of the Euler-Bernoulli and Timoshenko beams including the geometric and physical nonlinearity as well as the elastic-plastic deformations are illustrated. Despite the employed classical numerical analysis of nonlinear phenomena, the various wavelet transforms and the four Lyapunov exponents are used to detect, monitor and possibly control chaos, hyper-chaos, hyper-hyper-chaos and deep chaos exhibited by rectangular plate-strips and cylindrical panels.The book is intended for post-graduate and doctoral students, applied mathematicians, physicists, teachers and lecturers of universities and companies dealing with a nonlinear dynamical system, as well as theoretically inclined engineers of mechanical and civil engineering.