Nonlinear Systems Analysis


Book Description

When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.




Linear, Time-varying Approximations to Nonlinear Dynamical Systems


Book Description

Linear, Time-varying Approximations to Nonlinear Dynamical Systems introduces a new technique for analysing and controlling nonlinear systems. This method is general and requires only very mild conditions on the system nonlinearities, setting it apart from other techniques such as those – well-known – based on differential geometry. The authors cover many aspects of nonlinear systems including stability theory, control design and extensions to distributed parameter systems. Many of the classical and modern control design methods which can be applied to linear, time-varying systems can be extended to nonlinear systems by this technique. The implementation of the control is therefore simple and can be done with well-established classical methods. Many aspects of nonlinear systems, such as spectral theory which is important for the generalisation of frequency domain methods, can be approached by this method.




Nonlinear Control of Engineering Systems


Book Description

This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.




Nonlinear System Identification


Book Description

This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.




Nonlinear Systems


Book Description

There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.




Advances and Applications in Nonlinear Control Systems


Book Description

The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design procedures on the nonlinear control systems are emphasized using MATLAB software.




Nonlinear Systems


Book Description

A nonlinear system is a set of nonlinear equations, which may be algebraic, ordinary differential, partial differential, fractional, integral or a combination of these. Especially, nowadays, the term "dynamical system" is used as a synonym of nonlinear systems where the nonlinear equations represent the evolution of a solution over time. So, the notion of dynamical systems arose following the name of equations governing the motion of a system of particles, even though the nonlinear system may have no application to mechanics. Also, from an engineering point of view a nonlinear system may be represented with a feedback loop in which the output of an element is not proportional to its input. Over the last few decades, nonlinear systems have been used to describe a great variety of phenomena, in social and life sciences as well as in physical sciences and engineering. The theory of nonlinear systems has applications to problems of population growth, economics, chemical reactions, celestial mechanics, physiology of nerves, onset of turbulence, regulation of heartbeats, electronic circuits, cryptography, secure communications and many others. Nonlinear dynamical systems, which present chaotic behavior, are of great importance due to their applications in science and engineering. Chaotic systems are nonlinear dynamical systems and maps that are highly sensitive to initial conditions. The sensitivity of initial conditions is usually called the butter'y effect for dynamical systems and maps. So, nowadays the design and analysis of nonlinear systems and especially chaotic systems has gained the interest of the research community due to the fact that many phenomena on financial, physical, biological, chemical, mechanical and engineering systems can be modeled and studied through the perspective of nonlinear dynamics. These nonlinear systems can be modeled by discrete-time or continuous-time mathematical models.This book aims to bridge the gap between the design/analysis and applications, which are the two research stages on the progress of nonlinear systems and also which open up some new directions of real applications, where chaos can be put up to technological use, including secure communication systems, electronic circuits' design, memristors and radar. Finally, this book can serve as an updated and handy reference for university professors, graduate students, laboratory researchers as well as physicists and applied mathematicians who are interested in studying the chaos and its applications through the field of nonlinear systems.




Analysis and Control of Nonlinear Systems


Book Description

This book examines control of nonlinear systems. Coverage ranges from mathematical system theory to practical industrial control applications. The author offers web-based videos illustrating some dynamical aspects and case studies in simulation.




Control of Nonlinear Dynamical Systems


Book Description

This book is devoted to new methods of control for complex dynamical systems and deals with nonlinear control systems having several degrees of freedom, subjected to unknown disturbances, and containing uncertain parameters. Various constraints are imposed on control inputs and state variables or their combinations. The book contains an introduction to the theory of optimal control and the theory of stability of motion, and also a description of some known methods based on these theories. Major attention is given to new methods of control developed by the authors over the last 15 years. Mechanical and electromechanical systems described by nonlinear Lagrange’s equations are considered. General methods are proposed for an effective construction of the required control, often in an explicit form. The book contains various techniques including the decomposition of nonlinear control systems with many degrees of freedom, piecewise linear feedback control based on Lyapunov’s functions, methods which elaborate and extend the approaches of the conventional control theory, optimal control, differential games, and the theory of stability. The distinctive feature of the methods developed in the book is that the c- trols obtained satisfy the imposed constraints and steer the dynamical system to a prescribed terminal state in ?nite time. Explicit upper estimates for the time of the process are given. In all cases, the control algorithms and the estimates obtained are strictly proven.




Nonlinear System Identification


Book Description

Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.