Nonlinear Waves in Elastic Media


Book Description

Nonlinear Waves in Elastic Media explores the theoretical results of one-dimensional nonlinear waves, including shock waves, in elastic media. It is the first book to provide an in-depth and comprehensive presentation of the nonlinear wave theory while taking anisotropy effects into account. The theory is completely worked out and draws on 15 years of research by the authors, one of whom also wrote the 1965 classic Magnetohydrodynamics. Nonlinear Waves in Elastic Media emphasizes the behavior of quasitransverse waves and analyzes arbitrary discontinuity disintegration problems, illustrating that the solution can be non-unique - a surprising result. The solution is shown to be especially interesting when anisotropy and nonlinearity effects interact, even in small-amplitude waves. In addition, the text contains an independent mathematical chapter describing general methods to study hyperbolic systems expressing the conservation laws. The theoretical results described in Nonlinear Waves in Elastic Media allow, for the first time, discovery and interpretation of many new peculiarities inherent to the general problem of discontinuous solutions and so provide a valuable resource for advanced students and researchers involved with continuum mechanics and partial differential equations.




Nonlinear Waves in Elastic Crystals


Book Description

The mathematical modelling of changing structures in materials is of increasing importance to industry where applications of the theory are found in subjects as diverse as aerospace and medicine. This book deals with aspects of the nonlinear dynamics of deformable ordered solids (known as elastic crystals) where the nonlinear effects combine or compete with each other. Physical and mathematical models are discused and computational aspects are also included. Different models are considered - on discrete as well as continuum scales - applying heat, electricity, or magnetism to the crystal structure and these are analysed using the equations of rational mechanics. Students are introduced to the important equations of nonlinear science that describe shock waves, solitons and chaos and also the non-exactly integrable systems or partial differential equations. A large number of problems and examples are included, many taken from recent research and involving both one-dimensional and two-dimensional problems as well as some coupled degress of freedom.




Nonlinear Elastic Waves in Materials


Book Description

The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professionally interesting in waves. But mechanics is understood in the broad sense, when it includes mechanical and other engineering, material science, applied mathematics and physics and so forth. The genesis of this book can be found in author’s years of research and teaching while a head of department at SP Timoshenko Institute of Mechanics (National Academy of Sciences of Ukraine), a member of Center for Micro and Nanomechanics at Engineering School of University of Aberdeen (Scotland) and a professor at Physical-Mathematical Faculty of National Technical University of Ukraine “KPI”. The book comprises 11 chapters. Each chapter is complemented by exercises, which can be used for the next development of the theory of nonlinear waves.




Nonlinear Wave Processes in Acoustics


Book Description

This text considers models of different "acoustic" media as well as equations and behavior of finite-amplitude waves. It also considers the effects of nonlinearity, dissipation, dispersion, and for two- and three-dimensional problems, reflection and diffraction on the evolution and interaction of acoustic beams.




Nonlinear Waves in Active Media


Book Description

Euromech Colloquium No. 241 on Nonlinear Waves in Active Media at the Institute of Cybernetics of the Estonian Academy of Sciences, Tallin, Estonia, USSR, September 27-30, 1988




Nonlinear Waves in Integrable and Non-integrable Systems


Book Description

Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).




Selected Topics in Nonlinear Wave Mechanics


Book Description

This book gives an overview ofthe current state of nonlinear wave mechanics with emphasis on strong discontinuities (shock waves) and localized self preserving shapes (solitons) in both elastic and fluid media. The exposition is intentionallyat a detailed mathematical and physical level, our expectation being that the reader will enjoy coming to grips in a concrete manner with advances in this fascinating subject. Historically, modern research in nonlinear wave mechanics began with the famous 1858 piston problem paper of Riemann on shock waves and con tinued into the early part of the last century with the work of Hadamard, Rankine, and Hugoniot. After WWII, research into nonlinear propagation of dispersive waves rapidly accelerated with the advent of computers. Works of particular importance in the immediate post-war years include those of von Neumann, Fermi, and Lax. Later, additional contributions were made by Lighthill, Glimm, Strauss, Wendroff, and Bishop. Dispersion alone leads to shock fronts of the propagating waves. That the nonlinearity can com pensate for the dispersion, leading to propagation with a stable wave having constant velocity and shape (solitons) came as a surprise. A solitary wave was first discussed by J. Scott Russell in 1845 in "Report of British Asso ciations for the Advancement of Science. " He had, while horseback riding, observed a solitary wave travelling along a water channel and followed its unbroken progress for over a mile.




Nonlinear Waves In Bounded Media: The Mathematics Of Resonance


Book Description

This unique book aims to treat a class of nonlinear waves that are reflected from the boundaries of media of finite extent. It involves both standing (unforced) waves and resonant oscillations due to external periodic forcing. The waves are both hyperbolic and dispersive. To achieve this aim, the book develops the necessary understanding of linear waves and the mathematical techniques of nonlinear waves before dealing with nonlinear waves in bounded media. The examples used come mainly from gas dynamics, water waves and viscoelastic waves.




Linear And Nonlinear Wave Propagation


Book Description

Waves are essential phenomena in most scientific and engineering disciplines, such as electromagnetism and optics, and different mechanics including fluid, solid, structural, quantum, etc. They appear in linear and nonlinear systems. Some can be observed directly and others are not. The features of the waves are usually described by solutions to either linear or nonlinear partial differential equations, which are fundamental to the students and researchers.Generic equations, describing wave and pulse propagation in linear and nonlinear systems, are introduced and analyzed as initial/boundary value problems. These systems cover the general properties of non-dispersive and dispersive, uniform and non-uniform, with/without dissipations. Methods of analyses are introduced and illustrated with analytical solutions. Wave-wave and wave-particle interactions ascribed to the nonlinearity of media (such as plasma) are discussed in the final chapter.This interdisciplinary textbook is essential reading for anyone in above mentioned disciplines. It was prepared to provide students with an understanding of waves and methods of solving wave propagation problems. The presentation is self-contained and should be read without difficulty by those who have adequate preparation in classic mechanics. The selection of topics and the focus given to each provide essential materials for a lecturer to cover the bases in a linear/nonlinear wave course.