Use of Laboratory Animals in Biomedical and Behavioral Research


Book Description

Scientific experiments using animals have contributed significantly to the improvement of human health. Animal experiments were crucial to the conquest of polio, for example, and they will undoubtedly be one of the keystones in AIDS research. However, some persons believe that the cost to the animals is often high. Authored by a committee of experts from various fields, this book discusses the benefits that have resulted from animal research, the scope of animal research today, the concerns of advocates of animal welfare, and the prospects for finding alternatives to animal use. The authors conclude with specific recommendations for more consistent government action.




Nonmammalian Animal Models for Biomedical Research


Book Description

This book provides essential knowledge and informa-tion required to adequately assess useful alternatives from among the lower vertebrates and the invertebrates. This volume highlights unfamiliar and underde-veloped organisms that have the potential to become very satisfactory surrogates for biomedical research. A practical guide aimed at disseminating information to researchers about new models, this work provides compara-tive biomedical studies at many levels of the phyloge-netic ladder.




Biomedical Models and Resources


Book Description

Printbegrænsninger: Der kan printes 10 sider ad gangen og max. 40 sider pr. session.




Advances in Animal Experimentation and Modeling


Book Description

Exploration in Laboratory Animal Sciences Understanding Life Phenomena updates our knowledge about the newer technologies such as molecular biology, genomics including sequencing, proteomics, transcriptomics, cell culture, stem cell culture, transgenesis and their translation to understand systematics and phylogeny of laboratory animals at molecular level. In seven sections Exploration in Laboratory Animal Sciences Understanding Life Phenomena resolves issues of conservation, applications in environment monitoring, production of drugs and others. Comparative research has enabled use of domestic animal models that translate the advances in basic biosciences to the schemes for human welfare including medicine. Molecular geneticists are unravelling the complexities of mammalian genes and the field of biotechnology is maturing at a fast pace. Additionally, research focused on immunology and animal behavior offer new insight into ways of enhancing animal welfare. The rise in consumption of animal proteins in addition to the challenges of sustaining our natural resources has given animal scientists a vast array of opportunities to engage in integrative systems-based research for meeting the challenges that behold us. Exploration in Laboratory Animal Sciences Understanding Life Phenomena also discusses the manipulation of animals as factories for the production of safe foods, drugs, and sensors and others to meet the contemporary challenges faced by mankind in the new world order created by pandemic of Covid 19. It also includes several chapters on the causation and management of certain diseases and impact of microbes on life. - Provides insight to newer and futuristic technologies to understand disease process and drug design by animal models - Addresses a wide variety of species and covers a wide variety of topics (such as animal species, the laboratory setting, regulatory guidelines, and ethical considerations) to fully prepare for work with all types of animals - Gives a perspective on laboratory animal use that allows to explain the benefits of animal use as required by veterinary technology program accreditation procedure - Includes examples of animal bio-technological techniques (including stem cell and tissue engineering) for their applications to humanity - Offers new insight into ways of enhancing animal welfare by the inclusion of research results focused on immunology and laboratory animal behavior







Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.




Animal Models and Human Reproduction


Book Description

Our knowledge of reproductive biology has increased enormously in recent years on cellular, molecular, and genetic levels, leading to significant breakthroughs that have directly benefitted in vitro fertilization (IVF) and other assisted reproductive technologies (ART) in humans and animal systems. Animal Models and Human Reproduction presents a comprehensive reference that reflects the latest scientific research being done in human reproductive biology utilizing domestic animal models. Chapters on canine, equine, cow, pig, frog, and mouse models of reproduction reflect frontier research in placental biology, ovarian function and fertility, non-coding RNAs in gametogenesis, oocyte and embryo metabolism, fertilization, cryopreservation, signal transduction pathways, chromatin dynamics, epigenetics, reproductive aging, and inflammation. Chapters on non-human primate models also highlight recent advancements into such issues as human in vitro fertilization (IVF) and assisted reproductive technologies (ART). This book offers animal scientists, reproductive biology scientists, clinicians and practitioners, invaluable insights into a wide range of issues at the forefront of human reproductive health.




Neuroendocrine Control of Energy Homeostasis in Non-mammalian Vertebrates and Invertebrates


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Sourcebook of Models for Biomedical Research


Book Description

The collection of systems represented in Sourcebook of genomic programs, although this work is certainly well Models for Biomedical Research is an effort to re?ect the represented and indexed. diversity and utility of models that are used in biomedicine. Some models have been omitted due to page limitations That utility is based on the consideration that observations and we have encouraged the authors to use tables and made in particular organisms will provide insight into the ? gures to make comparisons of models so that observations workings of other, more complex, systems. Even the cell not available in primary publications can become useful to cycle in the simple yeast cell has similarities to that in the reader. humans and regulation with similar proteins occurs. We thank Richard Lansing and the staff at Humana for Some models have the advantage that the reproductive, guidance through the publication process. mitotic, development or aging cycles are rapid compared As this book was entering production, we learned of the with those in humans; others are utilized because individual loss of Tom Lanigan, Sr. Tom was a leader and innovator proteins may be studied in an advantageous way and that in scienti?c publishing and a good friend and colleague to have human homologs. Other organisms are facile to grow all in the exploratory enterprise. We dedicate this book to in laboratory settings or lend themselves to convenient analy- his memory. We will miss him greatly.




Animal Modeling in Cancer


Book Description

Dear Readers, Understanding the pathological mechanisms involved in human diseases and their possible treatment has been historically based on comparative analysis of diverse animal species that share a similar genetic, physiological and behavioural composition. The ancient Greeks were the first to use animals as models for anatomy and physiology, and this was consequently adopted by other cultures and led to important discoveries. In recent years, there have been many efforts to understand and fight cancer through new revolutionary personalized treatments and wider screenings that help diagnose and treat cancer. A fundamental part of this effort is to develop suitable cancer animal models that simulate the different disease variants and their progression. Ranging from tumor-derived xenografts to genetically engineered models, a wide variety of systems are applied for this purpose, and many technological breakthroughs are changing the way cancer is studied and analyzed. In this Special Issue, we collected a set of research articles and reviews that focus on the generation of cancer animal models that are used for understanding the disease and contribute to designing and testing new drugs for cancer prevention or treatment. Vladimir Korinek Collection Editor.