Hyperbolic Conservation Laws in Continuum Physics


Book Description

The 3rd edition is thoroughly revised, applications are substantially enriched, it includes a new account of the early history of the subject (from 1800 to 1957) and a new chapter recounting the recent solution of open problems of long standing in classical aerodynamics. The bibliography comprises now over fifteen hundred titles. From the reviews: "The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject of conservations laws." --Zentralblatt MATH




Analysis of Systems of Conservation Laws


Book Description

Systems of partial differential equations reflecting conservation laws hold significant relevance to a variety of theoretical and practical applications, including compressible fluid flow, electromagnetism, elasticity theory, and other areas of continuum mechanics. This field of nonlinear analysis is currently experiencing a marked increase in successful research activity. The EU-TMR network "Hyperbolic Systems of Conservation Laws held a summer program offering short courses on the Analysis of Systems of Conservation Laws. This book contains five of the self-contained short courses presented during this program by experts of international reputation. These courses, which address solutions to hyperbolic systems by the front tracking method, non-strictly hyperbolic conservation laws, hyperbolic-elliptic coupled systems, hyperbolic relaxation problems, the stability of nonlinear waves in viscous media and numerics, and more, represent the state of the art of most central aspects of the field.




Numerical Approximation of Hyperbolic Systems of Conservation Laws


Book Description

This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.




Hyperbolic Systems of Conservation Laws


Book Description

This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.




Some Current Topics on Nonlinear Conservation Laws


Book Description

This volume resulted from a year-long program at the Morningside Center of Mathematics at the Academia Sinica in Beijing. It presents an overview of nonlinear conversation laws and introduces developments in this expanding field. Zhouping Xin's introductory overview of the subject is followed by lecture notes of leading experts who have made fundamental contributions to this field of research. A. Bressan's theory of $-well-posedness for entropy weak solutions to systems of nonlinear hyperbolic conversation laws in the class of viscosity solutions is one of the most important results in the past two decades; G. Chen discusses weak convergence methods and various applications to many problems; P. Degond details mathematical modelling of semi-conductor devices; B. Perthame describes the theory of asymptotic equivalence between conservation laws and singular kinetic equations; Z. Xin outlines the recent development of the vanishing viscosity problem and nonlinear stability of elementary wave-a major focus of research in the last decade; and the volume concludes with Y. Zheng's lecture on incompressible fluid dynamics. This collection of lectures represents previously unpublished expository and research results of experts in nonlinear conservation laws and is an excellent reference for researchers and advanced graduate students in the areas of nonlinear partial differential equations and nonlinear analysis. Titles in this series are co-published with International Press, Cambridge, MA.




Nonlinear Hyperbolic Problems


Book Description

The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.







Numerical Methods for Conservation Laws


Book Description

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.




Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications


Book Description

On the occasion of the International Conference on Nonlinear Hyperbolic Problems held in St. Etienne, France, 1986 it was decided to start a two years cycle of conferences on this very rapidly expanding branch of mathematics and it·s applications in Continuum Mechanics and Aerodynamics. The second conference toolc place in Aachen, FRG, March 14-18, 1988. The number of more than 200 participants from more than 20 countries all over the world and about 100 invited and contributed papers, well balanced between theory, numerical analysis and applications, do not leave any doubt that it was the right decision to start this cycle of conferences, of which the third will be organized in Sweden in 1990. ThiS volume contains sixty eight original papers presented at the conference, twenty two cif them dealing with the mathematical theory, e.g. existence, uniqueness, stability, behaviour of solutions, physical modelling by evolution equations. Twenty two articles in numerical analysis are concerned with stability and convergence to the physically relevant solutions such as schemes especially deviced for treating shoclcs, contact discontinuities and artificial boundaries. Twenty four papers contain multidimensional computational applications to nonlinear waves in solids, flow through porous media and compressible fluid flow including shoclcs, real gas effects, multiphase phenomena, chemical reactions etc. The editors and organizers of the Second International Conference on Hyperbolic Problems would lilce to thanlc the Scientific Committee for the generous support of recommending invited lectures and selecting the contributed papers of the conference.




Hyperbolic Problems: Theory, Numerics, Applications - Proceedings Of The Fifth International Conference


Book Description

The intellectual center of this proceedings volume is the subject of conservation laws. Conservation laws are the most basic model of many continuum processes, and for this reason they govern the motion of fluids, solids, and plasma. They are basic to the understanding of more complex modeling issues, such as multiphase flow, chemically reacting flow, and non-equilibrium thermodynamics. Equations of this type also arise in novel and unexpected areas, such as the pattern recognition and image processing problem of edge enhancement and detection. The articles in this volume address the entire range of the study of conservation laws, including the fundamental mathematical theory, familiar and novel applications, and the numerical problem of finding effective computational algorithms for the solution of these problems.