Discrete Mathematics and Its Applications


Book Description

The companion Web site -- To the student -- The foundations : logic, sets, and functions -- The fundamentals : algorithms, the integers, and matrices -- Mathematical reasoning -- Counting -- Advanced counting techniques -- Relations -- Graphs -- Trees -- Boolean algebra -- Modeling computation




Number Theory and its Applications


Book Description

Number Theory and its Applications is a textbook for students pursuing mathematics as major in undergraduate and postgraduate courses. Please note: Taylor & Francis does not sell or distribute the print book in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.




Number Theory And Its Applications Ii


Book Description

The aim of the book is to give a smooth analytic continuation from basic subjects including linear algebra, group theory, Hilbert space theory, etc. to number theory. With plenty of practical examples and worked-out exercises, and the scope ranging from these basic subjects made applicable to number-theoretic settings to advanced number theory, this book can then be read without tears. It will be of immense help to the reader to acquire basic sound skills in number theory and its applications.Number theory used to be described as the queen of mathematics, that is, there is no practical use. However, with the development of computers and the security of internet communications, the importance of number theory has been exponentially increasing daily. The raison d'ĂȘtre of the present book in this situation is that it is extremely reader-friendly while keeping the rigor of serious mathematics and in-depth analysis of practical applications to various subjects including control theory and pseudo-random number generation. The use of operators is prevailing rather abundantly in anticipation of applications to electrical engineering, allowing the reader to master these skills without much difficulty. It also delivers a very smooth bridging between elementary subjects including linear algebra and group theory (and algebraic number theory) for the reader to be well-versed in an efficient and effortless way. One of the main features of the book is that it gives several different approaches to the same topic, helping the reader to gain deeper insight and comprehension. Even just browsing through the materials would be beneficial to the reader.




Advanced Number Theory with Applications


Book Description

Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo




Number Theory and Its History


Book Description

Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.




Valuation Theory and Its Applications


Book Description

This book is the first of two proceedings volumes stemming from the International Conference and Workshop on Valuation Theory held at the University of Saskatchewan (Saskatoon, SK, Canada). The special feature of this book is its focus on current applications of valuation theory to a broad range of topics. This first volume contains research and survey papers on a variety of valuation-theoretic topics, including rigid analytic geometry, real algebraic geometry, resolution of singularities, noncommutative valuation theory, valuations on fields, and Galois theory. Also included is a paper on the history of valuation theory. The book is suitable for graduate students and research mathematicians working in algebra, algebraic geometry, number theory, and mathematical logic.




Algebraic Number Theory


Book Description

Bringing the material up to date to reflect modern applications, this second edition has been completely rewritten and reorganized to incorporate a new style, methodology, and presentation. It offers a more complete and involved treatment of Galois theory, a more comprehensive section on Pollard's cubic factoring algorithm, and more detailed explanations of proofs to provide a sound understanding of challenging material. This edition also studies binary quadratic forms and compares the ideal and form class groups. The text includes convenient cross-referencing, a comprehensive index, and numerous exercises and applications.




Number Theory and Its Applications


Book Description

"Addresses contemporary developments in number theory and coding theory, originally presented as lectures at summer school held at Bilkent University, Ankara, Turkey. Includes many results in book form for the first time."




Number Theory With Applications


Book Description

Novel and important applications of number theory to graph theory and vice versa had been made in the past decade. The two main tools used are based on the estimates of character sums and the estimates of the eigenvalues of Hecke operators, both are rooted in the celebrated Weil conjectures settled by Deligne in 1973. The purpose of this book is to give, from scratch, a coherent and comprehensive introduction to the topics in number theory related to the central tools, with the ultimate goal of presenting their applications. This book includes many important subjects in number theory, such as Weil conjectures, Riemann-Roch theorem, L-functions, character sum estimates, modular forms, and representation theory.




Computational Number Theory


Book Description

Developed from the author's popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and pract