Simulation of Electrochemical Processes II


Book Description

This book contains papers presented at the Second International Conference in this successful series, which presents and discusses the state-of-the-art on the computer simulation of corrosion, electrochemical processes and the electrical and electromagnetic fields associated with them.Modern industry applies a wide range of electrochemical processes to protect against corrosion, provide surface treatments and to manufacture products. This book focuses on the computer modelling of these industrial processes and techniques by examining the developments of computational models and their application in practice.Featured topics include: Cathodic Protection Systems; Modelling Methodologies; Electrodeposition and Electroforming; Modelling of Coatings; Modelling Stress Corrosion, Cracking and Corrosion Fatigue; Modelling and Corrosion of Surface Coatings; Interference and Signature Control; Anodic Protection; Electrocoating and Plating; Optimisation of Control Systems; Detection and Monitoring of Corrosion; Measurement Techniques; Fuel on Photovoltaic Cells; Electrolysis Reactors; Comparison of Experimental Measurements and Computer results, Case Studies.




Tutorial Symposium on Electrochemical Engineering, in Honor of Professor John Newman’s 70th Birthday


Book Description

Quantitative methods for the analysis and design of electrochemical systems have progressed greatly over the past forty years. Much of this progress is due to the work of Professor John Newman of the University of California-Berkeley. A tutorial symposium was organized to recognize Prof. Newman¿s contributions on the occasion of his 70th birthday. This issue contains a series of invited lectures covering the basic principles of electrochemical engineering as well as a variety of examples of applications in electrodeposition, fuel cells, batteries, and electrolytic processes.










Electrochemical Reactors: Fundamentals, electrolysers, batteries, and fuel cells


Book Description

This book provides a guide for professionals interested in energy transfer and electrochemical technology systems. It covers the state-of-the-art of materials, electrochemistry and electrochemical engineering as related to electrochemical reactors, batteries and fuel cells. The fifteen chapters, written by experts in fields related to every aspect affecting reactor performance, are grouped into three parts. The first is devoted to fundamentals of reactors, batteries and fuel cells and covers various aspects of design, parts, construction, materials operation and control systems. The second group is devoted to specific reactors such as aqueous electro-organic and inorganic synthesis, electrochemical polymerization, molten salt electrolysis, electrochemical machining, metal finishing, reactor performance, failure mechanisms, corrosion control, materials selection and techniques. The third group deals with manufacturing techniques and surface treatment of materials for commercial reactors, commercial parts/materials, fastening, assembly and production of reactor parts and mathematical modelling of various reactor processes.







Bubbly Flows


Book Description

The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.







Chemical Reactor Analysis and Design


Book Description

This is the Second Edition of the standard text on chemical reaction engineering, beginning with basic definitions and fundamental principles and continuing all the way to practical applications, emphasizing real-world aspects of industrial practice. The two main sections cover applied or engineering kinetics, reactor analysis and design. Includes updated coverage of computer modeling methods and many new worked examples. Most of the examples use real kinetic data from processes of industrial importance.