Introduction to the Numerical Analysis of Incompressible Viscous Flows


Book Description

Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.













Direct Numerical Simulations of Gas–Liquid Multiphase Flows


Book Description

Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.




Numerical Methods for Two-phase Incompressible Flows


Book Description

This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.




Numerical Computation of Internal and External Flows, Volume 1


Book Description

Numerical Computation of Internal and External Flows Volume 1: Fundamentals of Numerical Discretization C. Hirsch, Vrije Universiteit Brussel, Brussels, Belgium This is the first of two volumes which together describe comprehensively the theory and practice of the numerical computation of internal and external flows. In this volume, the author explains the use of basic computational methods to solve problems in fluid dynamics, comparing these methods so that the reader can see which would be the most appropriate to use for a particular problem. The book is divided into four parts. In the first part, mathematical models are introduced. In the second part, the various numerical methods are described, while in the third and fourth parts the workings of these methods are investigated in some detail. Volume 2 will be concerned with the applications of numerical methods to flow problems, and together the two volumes will provide an excellent reference for practitioners and researchers working in computational fluid mechanics and dynamics.




Numerical Heat Transfer and Fluid Flow


Book Description

This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.




Vortex Flows and Related Numerical Methods


Book Description

Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.




Numerical Heat Transfer and Fluid Flow


Book Description

This book comprises selected papers from the International Conference on Numerical Heat Transfer and Fluid Flow (NHTFF 2018), and presents the latest developments in computational methods in heat and mass transfer. It also discusses numerical methods such as finite element, finite difference, and finite volume applied to fluid flow problems. Providing a good balance between computational methods and analytical results applied to a wide variety of problems in heat transfer, transport and fluid mechanics, the book is a valuable resource for students and researchers working in the field of heat transfer and fluid dynamics.