Multi-point Cooperative Communication Systems: Theory and Applications


Book Description

Multi-point Cooperative Communication Systems: Theory and Applications mainly discusses multi-point cooperative communication technologies which are used to overcome the long-standing problem of limited transmission rate caused by the inter-point interference. Instead of combating the interference, recent progress in both academia and industrial standardizations has evolved to adopt the philosophy of “exploiting” the interference to improve the transmission rate by cooperating among multiple points. This book addresses the multi-point cooperative communication system systematically giving the readers a clear picture of the technology map and where the discussed schemes may fit. This book includes not only the theories of the paradigm-shifting multi-point cooperative communication, but also the designs of sub-optimal cooperative communication schemes for practical systems. Ming Ding is a senior researcher at Sharp Laboratories of China; Hanwen Luo is a professor at Shanghai Jiao Tong University.




Multiple Access Channels


Book Description

Surveys general results on multiple-access channels, and gives an overview of the problems of CDMA solutions. This work includes chapters devoted to the information-theoretical aspects of multiple-access communication. It discusses multiple-access techniques and covers coding techniques.
















Performance Analysis of Multi-Channel and Multi-Traffic on Wireless Communication Networks


Book Description

With the rapidly increasing penetration of laptop computers and mobile phones, which are primarily used by mobile users to access Internet s- vices like e-mail and World Wide Web (WWW) access, support of Internet services in a mobile environment is an emerging requirement. Wireless n- works have been used for communication among fully distributed users in a multimedia environment that has the needs to provide real-time bursty traffic (such as voice or video) and data traffic with excellent reliability and service quality. To satisfy the huge wireless multimedia service demand and improve the system performance, efficient channel access methods and analytical methods must be provided. In this way very accurate models, that faithfully reproduce the stochastic behavior of multimedia wireless communication and computer networks, can be constructed. Most of these system models are discrete-time queueing systems. Queueing networks and Markov chains are commonly used for the p- formance and reliability evaluation of computer, communication, and m- ufacturing systems. Although there are quite a few books on the individual topics of queueing networks and Markov chains, we have found none that covers the topics of discrete-time and continuous-time multichannel mul- traffic queueing networks. On the other hand, the design and development of multichannel mul- hop network systems and interconnected network systems or integrated n- works of multimedia traffic require not only such average performance m- sures as the throughput or packet delay but also higher moments of traffic departures and transmission delay.