Octagonal Neutrosophic Number: Its Different Representations, Properties, Graphs and De-neutrosophication with the application of Personnel Selection


Book Description

To deal with fluctations in decision-making, fuzzy / neutrosophic numbers are used. The problem having more fluctuations are difficult to sovle. Thus it is a dire need to define higher order number, also It is a very curious question by researchers all around the world that how octagonal neutrosophic number can be represented and how to be graphed? In this research article, the primarily focused on the representation and graphs of octagonal neutrosophic number. at last, a case study is done using VIKOR method based on octagonal neutrosophic number. These representations will be helpful in multi-criteria decision making problems in the case that there are large number of fluctuations. Finally, concluded the present work with future directions.




Collected Papers. Volume XIII


Book Description

This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic Graphs; Superhypergraphs; Plithogeny; Information Fusion; Statistics; Decision Making; Extenics; Instantaneous Physics; Paradoxism; Mathematica; Miscellanea), comprising 965 pages, published between 2005-2022 in different scientific journals, by the author alone or in collaboration with the following 110 co-authors (alphabetically ordered) from 26 countries: Abduallah Gamal, Sania Afzal, Firoz Ahmad, Muhammad Akram, Sheriful Alam, Ali Hamza, Ali H. M. Al-Obaidi, Madeleine Al-Tahan, Assia Bakali, Atiqe Ur Rahman, Sukanto Bhattacharya, Bilal Hadjadji, Robert N. Boyd, Willem K.M. Brauers, Umit Cali, Youcef Chibani, Victor Christianto, Chunxin Bo, Shyamal Dalapati, Mario Dalcín, Arup Kumar Das, Elham Davneshvar, Bijan Davvaz, Irfan Deli, Muhammet Deveci, Mamouni Dhar, R. Dhavaseelan, Balasubramanian Elavarasan, Sara Farooq, Haipeng Wang, Ugur Halden, Le Hoang Son, Hongnian Yu, Qays Hatem Imran, Mayas Ismail, Saeid Jafari, Jun Ye, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Abdullah Kargın, Vasilios N. Katsikis, Nour Eldeen M. Khalifa, Madad Khan, M. Khoshnevisan, Tapan Kumar Roy, Pinaki Majumdar, Sreepurna Malakar, Masoud Ghods, Minghao Hu, Mingming Chen, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohamed Loey, Mihnea Alexandru Moisescu, Muhammad Ihsan, Muhammad Saeed, Muhammad Shabir, Mumtaz Ali, Muzzamal Sitara, Nassim Abbas, Munazza Naz, Giorgio Nordo, Mani Parimala, Ion Pătrașcu, Gabrijela Popović, K. Porselvi, Surapati Pramanik, D. Preethi, Qiang Guo, Riad K. Al-Hamido, Zahra Rostami, Said Broumi, Saima Anis, Muzafer Saračević, Ganeshsree Selvachandran, Selvaraj Ganesan, Shammya Shananda Saha, Marayanagaraj Shanmugapriya, Songtao Shao, Sori Tjandrah Simbolon, Florentin Smarandache, Predrag S. Stanimirović, Dragiša Stanujkić, Raman Sundareswaran, Mehmet Șahin, Ovidiu-Ilie Șandru, Abdulkadir Șengür, Mohamed Talea, Ferhat Taș, Selçuk Topal, Alptekin Ulutaș, Ramalingam Udhayakumar, Yunita Umniyati, J. Vimala, Luige Vlădăreanu, Ştefan Vlăduţescu, Yaman Akbulut, Yanhui Guo, Yong Deng, You He, Young Bae Jun, Wangtao Yuan, Rong Xia, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Zayen Azzouz Omar, Xiaohong Zhang, Zhirou Ma.




Neutrosophic Sets and Systems, vol. 51/2022


Book Description

“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).




International Journal of Neutrosophic Science (IJNS) Volume 8, 2020


Book Description

International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.




Generalized plithogenic whole hypersoft set, PFHSS-Matrix, operators and applications as COVID-19 data structures


Book Description

This article is a preliminary draft for initiating and commencing a new pioneer dimension of expression. To deal with higher-dimensional data or information flowing in this modern era of information technology and artificial intelligence, some innovative super algebraic structures are essential to be formulated. In this paper, we have introduced such matrices that have multiple layers and clusters of layers to portray multi-dimensional data or massively dispersed information of the plithogenic universe made up of numerous subjects their attributes, and sub-attributes. For grasping that field of parallel information, events, and realities flowing from the micro to the macro level of universes, we have constructed hypersoft and hyper-super-soft matrices in a Plithogenic Fuzzy environment. These Matrices classify the non-physical attributes by accumulating the physical subjects and further sort the physical subjects by accumulating their non-physical attributes. We presented themasPlithogenicAttributiveSubjectivelyWholeHyper-Super-Soft-Matrix(PASWHSS-Matrix)andPlithogenic Subjective Attributively Whole-Hyper-Super-Soft-Matrix (PSAWHSS-Matrix). Several types of views and level-layers of these matrices are described. In addition, some local aggregation operators for Plithogenic Fuzzy Hypersoft Set (PPFHS-Set) are developed. Finally, few applications of these matrices and operators are used as numerical examples of COVID-19 data structures.




Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications


Book Description

In this paper, we introduce the concept of neutrosophic number from different viewpoints. We define different types of linear and non-linear generalized triangular neutrosophic numbers which are very important for uncertainty theory. We introduced the de-neutrosophication concept for neutrosophic number for triangular neutrosophic numbers. This concept helps us to convert a neutrosophic number into a crisp number. The concepts are followed by two application, namely in imprecise project evaluation review technique and route selection problem.




Neutrosophy


Book Description




Neutrosophic Operational Research


Book Description

This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.




Some properties of Pentagonal Neutrosophic Numbers and its Applications in Transportation Problem Environment


Book Description

In this research article we actually deals with the conception of pentagonal Neutrosophic number from a different frame of reference. Recently, neutrosophic set theory and its extensive properties have given different dimensions for researchers. This paper focuses on pentagonal neutrosophic numbers and its distinct properties. At the same time, we defined the disjunctive cases of this number whenever the truthiness, falsity and hesitation portion are dependent and independent to each other. Some basic properties of pentagonal neutrosophic numbers with its logical score and accuracy function is introduced in this paper with its application in real life operation research problem which is more reliable than the other methods.




Neutrosophic Linear Programming Problems


Book Description

Smarandache presented neutrosophic theory as a tool for handling undetermined information. Wang et al. introduced a single valued neutrosophic set that is a special neutrosophic sets and can be used expediently to deal with real-world problems, especially in decision support.