OLED Displays and Lighting


Book Description

Explains the fundamentals and practical applications of flat and flexible OLEDs for displays and lighting Organic light-emitting diodes (OLEDs) have emerged as the leading technology for the new display and lighting market. OLEDs are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used today. This book covers both the fundamentals and practical applications of flat and flexible OLEDs. Key features: Covers all of the aspects necessary to the design and manufacturing of OLED displays and lighting. Explains the fundamental basic technologies and also related technologies which might contribute to the next innovation in the industry. Provides several indications for future innovation in the OLED industry. Includes coverage of OLED vacuum deposition type and solution type materials. The book is essential reading for early career engineers developing OLED devices and OLED related technologies in industrial companies, such as OLED device fabrication companies.




OLED Displays and Lighting


Book Description

Explains the fundamentals and practical applications of flat and flexible OLEDs for displays and lighting Organic light-emitting diodes (OLEDs) have emerged as the leading technology for the new display and lighting market. OLEDs are solid-state devices composed of thin films of organic molecules that create light with the application of electricity. OLEDs can provide brighter, crisper displays on electronic devices and use less power than conventional light-emitting diodes (LEDs) or liquid crystal displays (LCDs) used today. This book covers both the fundamentals and practical applications of flat and flexible OLEDs. Key features: Covers all of the aspects necessary to the design and manufacturing of OLED displays and lighting. Explains the fundamental basic technologies and also related technologies which might contribute to the next innovation in the industry. Provides several indications for future innovation in the OLED industry. Includes coverage of OLED vacuum deposition type and solution type materials. The book is essential reading for early career engineers developing OLED devices and OLED related technologies in industrial companies, such as OLED device fabrication companies.




OLED Display Fundamentals and Applications


Book Description

This new edition specifically addresses the most recent and relevant developments in the design and manufacture of OLED displays Provides knowledge of OLED fundamentals and related technologies for applications such as displays and solid state lighting along with processing and manufacturing technologies Serves as a reference for people engaged in OLED research, manufacturing, applications and marketing Includes coverage of white + color filter technology, which has become industry standard technology for large televisions




OLED Fundamentals


Book Description

A Comprehensive Source for Taking on the Next Stage of OLED R&DOLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and ma




Fundamentals of Solid-State Lighting


Book Description

Compared to traditional electrical filaments, arc lamps, and fluorescent lamps, solid-state lighting offers higher efficiency, reliability, and environmentally friendly technology. LED / solid-state lighting is poised to take over conventional lighting due to cost savings—there is pretty much no debate about this. In response to the recent activity in this field, Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays covers a range of solid-state devices, technologies, and materials used for lighting and displays. It also examines auxiliary but critical requirements of efficient applications, such as modeling, thermal management, reliability, and smart lighting. The book discusses performance metrics of LEDs such as efficiency, efficacy, current–voltage characteristics, optical parameters like spectral distribution, color temperature, and beam angle before moving on to luminescence theory, injection luminescence, radiative and non-radiative recombination mechanisms, recombination rates, carrier lifetimes, and related topics. This lays down the groundwork for understanding LED operation. The book then discusses energy gaps, light emission, semiconductor material, special equipment, and laboratory facilities. It also covers production and applications of high-brightness LEDs (HBLEDs) and organic LEDs (OLEDs). LEDs represent the landmark development in lighting since the invention of electric lighting, allowing us to create unique, low-energy lighting solutions, not to talk about their minor maintenance expenses. The rapid strides of LED lighting technology over the last few years have changed the dynamics of the global lighting market, and LEDs are expected to be the mainstream light source in the near future. In a nutshell, the book traces the advances in LEDs, OLEDs, and their applications, and presents an up-to-date and analytical perspective of the scenario for audiences of different backgrounds and interests.




Assessment of Solid-State Lighting, Phase Two


Book Description

The standard incandescent light bulb, which still works mainly as Thomas Edison invented it, converts more than 90% of the consumed electricity into heat. Given the availability of newer lighting technologies that convert a greater percentage of electricity into useful light, there is potential to decrease the amount of energy used for lighting in both commercial and residential applications. Although technologies such as compact fluorescent lamps (CFLs) have emerged in the past few decades and will help achieve the goal of increased energy efficiency, solid-state lighting (SSL) stands to play a large role in dramatically decreasing U.S. energy consumption for lighting. Since the publication of the 2013 National Research Council report Assessment of Advanced Solid-State Lighting, the penetration of SSL has increased dramatically, with a resulting savings in energy and costs that were foreshadowed by that study. What was not anticipated then is the dramatic dislocation and restructuring of the SSL marketplace, as cost reductions for light-emitting diode (LED) components reduced profitability for LED manufacturers. At the same time, there has been the emergence of new applications for SSL, which have the potential to create new markets and commercial opportunities for the SSL industry. Assessment of Solid-State Lighting, Phase Two discusses these aspects of changeâ€"highlighting the progress of commercialization and acceptance of SSL and reviewing the technical advances and challenges in achieving higher efficacy for LEDs and organic light-emitting diodes. This report will also discuss the recent trends in SSL manufacturing and opportunities for new applications and describe the role played by the Department of Energy (DOE) Lighting Program in the development of SSL.




Flexible OLEDs


Book Description

This book offers a wealth of knowledge and information about the fundamental and practical aspects of flexible organic light-emitting diode (OLED) devices. The book provides an overview of these devices by considering their merits and business potential, the history of their research and development, the fundamental technology, and required properties for materials, devices, processes, and future trends of flexible OLED devices. The practical sections describe novel, cutting-edge expertise for flexible substrates, gas barriers, encapsulation, novel electrodes, and on-demand patterning for OLED devices. Applications of the technologies of ultra-thin glass, stainless steel foil, and barrier films are described as flexible substrates. The book also explains features such as dry-barrier layers, wet-barrier layers, multi-layer barrier structures, dam-fill encapsulation, thin film encapsulation (TFE), and laminating encapsulation. In addition, there are explanations of novel electrodes and on-demand ink-jet patterning, both of which are applicable to flexible OLED devices. As the novel electrodes, transparent conducting polymer, silver nanowire (AgNW), metal-mesh and roll-to-roll (R2R) process technologies are included. The know-how that is described here is applicable to flexible devices, not only for OLEDs, OPVs, OTFTs, and others but also for sensors, wearable devices, robots, and healthcare devices. The information contained in this valuable book is useful for all scientists, engineers, and managers who are interested in the field of flexible devices.




Polymers for Light-emitting Devices and Displays


Book Description

Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.




Organic Light-Emitting Materials and Devices


Book Description

Organic Light-Emitting Materials and Devices provides a single source of information covering all aspects of OLEDs, including the systematic investigation of organic light-emitting materials, device physics and engineering, and manufacturing and performance measurement techniques. This Second Edition is a compilation of the advances made in recent years and of the challenges facing the future development of OLED technology. Featuring chapters authored by internationally recognized academic and industrial experts, this authoritative text: Introduces the history, fundamental physics, and potential applications of OLEDs Reviews the synthesis, properties, and device performance of electroluminescent materials used in OLEDs Reflects the current state of molecular design, exemplifying more than 600 light-emitting polymers and highlighting the most efficient materials and devices Explores small molecules-based OLEDs, detailing hole- and electron-injection and electron-transport materials, electron- and hole-blocking materials, sensitizers, and fluorescent and phosphorescent light-emitting materials Describes solution-processable phosphorescent polymer LEDs, energy transfer processes, polarized OLEDs, anode materials, and vapor deposition manufacturing techniques employed in OLED fabrication Discusses flexible display, the backplane circuit technology for organic light-emitting displays, and the latest microstructural characterization and performance measurement techniques Contains abundant diagrams, device configurations, and molecular structures clearly illutrating the presented ideas Organic Light-Emitting Materials and Devices, Second Edition offers a comprehensive overview of the OLED field and can serve as a primary reference for those needing additional information in any particular subarea of organic electroluminescence. This book should attract the attention of materials scientists, synthetic chemists, solid-state physicists, and electronic device engineers, as well as industrial managers and patent lawyers engaged in OLED-related business areas.




OLED and QLED Displays and Lighting


Book Description

Organic light-emitting diodes (OLEDs) and quantum dot light emitting diodes (QLEDs) are devices which emit light in response to an electric current and used to produce digital displays. They have attracted attention due to their uses in television screens, computer/laptop monitors and mobile phones. This book is written by eminent scientists who have a direct knowledge of all the issues involved in OLED and QLEDs, and therefore gives a complete picture of the subject for the advanced undergraduate/post graduate level.