The Poetics of Perspective


Book Description

Perspective has been a divided subject, orphaned among various disciplines from philosophy to gardening. In the first book to bring together recent thinking on perspective from such fields as art history, literary theory, aesthetics, psychology, and the history of mathematics, James Elkins leads us to a new understanding of how we talk about pictures. Elkins provides an abundantly illustrated history of the theory and practice of perspective. Looking at key texts from the Renaissance to the present, he traces a fundamental historical change that took place in the way in which perspective was conceptualized; first a technique for constructing pictures, it slowly became a metaphor for subjectivity. That gradual transformation, he observes, has led to the rifts that today separate those who understand perspective as a historical or formal property of pictures from those who see it as a linguistic, cognitive, or epistemological metaphor. Elkins considers how the principal concepts of perspective have been rewritten in work by Erwin Panofsky, Hubert Damisch, Martin Jay, Paul Ricoeur, Jacques Lacan, Maurice Merleau-Ponty, and E. H. Gombrich. The Poetics of Perspective illustrates that perspective is an unusual kind of subject: it exists as a coherent idea, but no one discipline offers an adequate exposition of it. Rather than presenting perspective as a resonant metaphor for subjectivity, a painter's tool without meaning, a disused historical practice, or a model for vision and representation, Elkins proposes a comprehensive revaluation. The perspective he describes is at once a series of specific pictorial decisions and a powerful figure for our knowledge of the world.




Quantum Nonlocality and Reality


Book Description

A collaboration between distinguished physicists and philosophers of physics, this important anthology surveys the deep implications of Bell's nonlocality theorem.




Foundations of Quantum Theory


Book Description

This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.




Quanta and Mind


Book Description

This edited volume examines aspects of the mind/consciousness that are relevant to the interpretations of quantum mechanics. In it, an international group of contributors focus on the possible connections between quantum mechanics and consciousness. They look at how consciousness can help us with quantum mechanics as well as how quantum mechanics can contribute to our understanding of consciousness. For example, what do different interpretations aimed at solving the measurement problem in quantum mechanics tell us about the nature of consciousness, such as von Neumann's interpretation? Each interpretation has, associated to it, a corresponding metaphysical framework that helps us think about possible “models” of consciousness. Alternatively, what does the nature of consciousness tell us about the role of the observer and time reversibility in the measurement process? The book features 20 papers on contemporary approaches to quanta and mind. It brings together the work of scholars from different disciplines with diverse views on the connections between quanta and mind, ranging from those who are supportive of a link between consciousness and quantum physics to those who are very skeptical of such link. Coverage includes such topics as free will in a quantum world, contextuality and causality, mind and matter interaction, quantum panpsychism, the quantum and quantum-like brain, and the role of time in brain-mind dynamics.







Bell's Theorem and Quantum Realism


Book Description

Quantum theory presents a strange picture of the world, offering no real account of physical properties apart from observation. Neils Bohr felt that this reflected a core truth of nature: "There is no quantum world. There is only an abstract mathematical description." Among the most significant developments since Bohr’s day has been the theorem of John S. Bell. It is important to consider whether Bell’s analysis supports such a denial of microrealism. In this book, we evaluate the situation in terms of an early work of Erwin Schrödinger. Doing so, we see how Bell’s theorem is conceptually related to the Conway and Kochen Free Will theorem and also to all the major anti-realism efforts. It is easy to show that none of these analyses imply the impossibility of objective realism. We find that Schrödinger’s work leads to the derivation of a new series of theoretical proofs and potential experiments, each involving “entanglement,” the link between particles in some quantum systems. .







Philosophy of Physics


Book Description

The ambition of this volume is twofold: to provide a comprehensive overview of the field and to serve as an indispensable reference work for anyone who wants to work in it. For example, any philosopher who hopes to make a contribution to the topic of the classical-quantum correspondence will have to begin by consulting Klaas Landsman's chapter. The organization of this volume, as well as the choice of topics, is based on the conviction that the important problems in the philosophy of physics arise from studying the foundations of the fundamental theories of physics. It follows that there is no sharp line to be drawn between philosophy of physics and physics itself. Some of the best work in the philosophy of physics is being done by physicists, as witnessed by the fact that several of the contributors to the volume are theoretical physicists: viz., Ellis, Emch, Harvey, Landsman, Rovelli, 't Hooft, the last of whom is a Nobel laureate. Key features - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences that have grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers




Decoherence and the Appearance of a Classical World in Quantum Theory


Book Description

A unique description of the phenomena that arise from the interaction between quantum systems and their environment. Because of the novel character of the approach discussed, the book addresses scientists from all fields of physics and related disciplines as well as students of physics.




Numerical Mathematics and Advanced Applications


Book Description

These proceedings collect lectures given at ENUMATH 2005, the 6th European Conference on Numerical Mathematics and Advanced Applications held in Santiago de Compostela, Spain in July, 2005. Topics include applications such as fluid dynamics, electromagnetism, structural mechanics, interface problems, waves, finance, heat transfer, unbounded domains, numerical linear algebra, convection-diffusion, as well as methodologies such as a posteriori error estimates, discontinuous Galerkin methods, multiscale methods, optimization, and more.