A Unified Approach to Boundary Value Problems


Book Description

This text presents a new approach to analysing initial-boundary value problems for integrable partial differential equations.







Boundary Value Problems, Weyl Functions, and Differential Operators


Book Description

This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.




Lectures on Elliptic Boundary Value Problems


Book Description

This book, which is a new edition of a book originally published in 1965, presents an introduction to the theory of higher-order elliptic boundary value problems. The book contains a detailed study of basic problems of the theory, such as the problem of existence and regularity of solutions of higher-order elliptic boundary value problems. It also contains a study of spectral properties of operators associated with elliptic boundary value problems. Weyl's law on the asymptotic distribution of eigenvalues is studied in great generality.







State-Dependent Impulses


Book Description

This book offers the reader a new approach to the solvability of boundary value problems with state-dependent impulses and provides recently obtained existence results for state dependent impulsive problems with general linear boundary conditions. It covers fixed-time impulsive boundary value problems both regular and singular and deals with higher order differential equations or with systems that are subject to general linear boundary conditions. We treat state-dependent impulsive boundary value problems, including a new approach giving effective conditions for the solvability of the Dirichlet problem with one state-dependent impulse condition and we show that the depicted approach can be extended to problems with a finite number of state-dependent impulses. We investigate the Sturm–Liouville boundary value problem for a more general right-hand side of a differential equation. Finally, we offer generalizations to higher order differential equations or differential systems subject to general linear boundary conditions.




Boundary Value Problems


Book Description

Boundary Value Problems is a translation from the Russian of lectures given at Kazan and Rostov Universities, dealing with the theory of boundary value problems for analytic functions. The emphasis of the book is on the solution of singular integral equations with Cauchy and Hilbert kernels. Although the book treats the theory of boundary value problems, emphasis is on linear problems with one unknown function. The definition of the Cauchy type integral, examples, limiting values, behavior, and its principal value are explained. The Riemann boundary value problem is emphasized in considering the theory of boundary value problems of analytic functions. The book then analyzes the application of the Riemann boundary value problem as applied to singular integral equations with Cauchy kernel. A second fundamental boundary value problem of analytic functions is the Hilbert problem with a Hilbert kernel; the application of the Hilbert problem is also evaluated. The use of Sokhotski's formulas for certain integral analysis is explained and equations with logarithmic kernels and kernels with a weak power singularity are solved. The chapters in the book all end with some historical briefs, to give a background of the problem(s) discussed. The book will be very valuable to mathematicians, students, and professors in advanced mathematics and geometrical functions.




Solving Ordinary and Partial Boundary Value Problems in Science and Engineering


Book Description

This book provides an elementary, accessible introduction for engineers and scientists to the concepts of ordinary and partial boundary value problems, acquainting readers with fundamental properties and with efficient methods of constructing solutions or satisfactory approximations. Discussions include: ordinary differential equations classical theory of partial differential equations Laplace and Poisson equations heat equation variational methods of solution of corresponding boundary value problems methods of solution for evolution partial differential equations The author presents special remarks for the mathematical reader, demonstrating the possibility of generalizations of obtained results and showing connections between them. For the non-mathematician, the author provides profound functional-analytical results without proofs and refers the reader to the literature when necessary. Solving Ordinary and Partial Boundary Value Problems in Science and Engineering contains essential functional analytical concepts, explaining its subject without excessive abstraction.