Gamma-Ray Bursts: 15 Years of GRB Afterglows


Book Description

Gamma-ray bursts (GRB) are amongst the most energetic phenomena in the Universe. In 1997 (more than 15 years ago), BeppoSAX allowed the detection of the first GRB X-ray afterglow, leading to the detection of afterglows at other wavelengths (optical, radio) in the following years, probing the cosmological distance scale. There are still many other open issues which still need to be addressed, regarding both theoretical and observational aspects: prompt emission and afterglow physics, progenitors (including Pop III stars), host galaxies, multi-messenger information, etc.




Gamma-ray Bursts


Book Description

Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.




Searching for the Long-Duration Gamma-Ray Burst Progenitor


Book Description

Nominated as an outstanding thesis by the Department of Physics and Astronomy of the University of New Mexico, this thesis seeks to identify the gamma-ray burst (GRB) progenitor. GRBs are extragalactic explosions that briefly outshine entire galaxies, but the mechanism that can release that much energy over a 100 second burst is still a mystery. The leading candidate for the GRB progenitor is currently a massive star which collapses to form a black hole–accretion disk system that powers the GRB. GRB afterglows, however, do not always show the expected behavior of a relativistic blast wave interacting with the stellar wind that such a progenitor should have produced before its collapse./pppIn this book, the author uses the Zeus-MP astrophysical hydrodynamics code to model the environment around a stellar progenitor prior to the burst. He then develops a new semi-analytic MHD and emission model to produce light curves for GRBs encountering these realistic density profiles. The work ultimately shows that the circumburst medium surrounding a GRB at the time of the explosion is much more complex than a pure wind, and that observed afterglows are entirely consistent with a large subset of proposed stellar progenitors.




Toward an Understanding of the Progenitors of Gamma-Ray Bursts


Book Description

The various possibilities for the origin ("progenitors") of gamma-ray bursts (GRBs) manifest in differing observable properties. Through deep spectroscopic and high-resolution imaging observations of some GRB hosts, I demonstrate that well-localized long-duration GRBs are connected with otherwise normal star-forming galaxies at moderate redshifts of order unity. Using high-mass binary stellar population synthesis models, I quantify the expected spatial extent around galaxies of coalescing neutron stars, one of the leading contenders for GRB progenitors. I then test this scenario by examining the offset distribution of GRBs about their apparent hosts making extensive use of ground-based optical data from Keck and Palomar and space-based imaging from the Hubble Space Telescope. The offset distribution appears to be inconsistent with the coalescing neutron star binary hypothesis (and, similarly, black-hole--neutron star coalescences); instead, the distribution is statistically consistent with a population of progenitors that closely traces the ultra-violet light of galaxies. This is naturally explained by bursts which originate from the collapse of massive stars ``collapsars''). This claim is further supported by the unambiguous detections of intermediate-time (approximately three weeks after the bursts) emission ``bumps'' which appear substantially more red than the afterglows themselves. I claim that these bumps could originate from supernovae that occur at approximately the same time as the associated GRB; if true, GRB 980326 and GRB 011121 provide strong observational evidence connecting cosmological GRBs to high-redshift supernovae and implicate massive stars as the progenitors of at least some long-duration GRBs.




Spectroscopy of the Environments of Long Gamma-ray Bursts and Their Progenitors


Book Description

"Gamma-ray bursts (GRBs) are the most energetic explosions in the universe. Long-duration GRBs are thought to be caused by the final collapse of a massive star (ten to possibly a few hundred times the Sun). Massive stars, though they are much less numerous than lower-mass stars, greatly influence the structure and evolution of galaxies. Via their radiation, strong stellar winds and supernova explosions, massive stars dominate the energetic and chemical feedback to the interstellar medium. Metallicity, or the fraction of elements heavier than hydrogen and helium, is a central theme in this thesis. Although massive stars produce most of these metals, their evolution and fate also strongly depend on metallicity, as well as the production of GRBs. With state-of-the-art instrumentation, we study massive stars and their environments just beyond our Local Group of galaxies. Thanks to bright GRB afterglows, we can probe massive-star environments at cosmological distances and earliest times. The GRB afterglow acts as a backlight shining through its host galaxy; the spectrum of the host provides key information on, for example, its distance and the metallicity. Recently, we have been able to obtain high quality spectra of very distant GRBs, with redshifts between four and six. We used the powerful X-shooter spectrograph on the ESO Very Large Telescope, dedicated to study these faint and redshifted sources. This PhD thesis is a collection of spectroscopic studies of GRB afterglows and their massive-star progenitors."--Samenvatting auteur.




What Are Gamma-Ray Bursts?


Book Description

A brief, cutting-edge introduction to the brightest cosmic phenomena known to science Gamma-ray bursts are the brightest—and, until recently, among the least understood—cosmic events in the universe. Discovered by chance during the cold war, these evanescent high-energy explosions confounded astronomers for decades. But a rapid series of startling breakthroughs beginning in 1997 revealed that the majority of gamma-ray bursts are caused by the explosions of young and massive stars in the vast star-forming cauldrons of distant galaxies. New findings also point to very different origins for some events, serving to complicate but enrich our understanding of the exotic and violent universe. What Are Gamma-Ray Bursts? is a succinct introduction to this fast-growing subject, written by an astrophysicist who is at the forefront of today's research into these incredible cosmic phenomena. Joshua Bloom gives readers a concise and accessible overview of gamma-ray bursts and the theoretical framework that physicists have developed to make sense of complex observations across the electromagnetic spectrum. He traces the history of remarkable discoveries that led to our current understanding of gamma-ray bursts, and reveals the decisive role these phenomena could play in the grand pursuits of twenty-first century astrophysics, from studying gravity waves and unveiling the growth of stars and galaxies after the big bang to surmising the ultimate fate of the universe itself. What Are Gamma-Ray Bursts? is an essential primer to this exciting frontier of scientific inquiry, and a must-read for anyone seeking to keep pace with cutting-edge developments in physics today.




On the Nature of [gamma]-ray Burst Hosting Galaxies


Book Description

Long [gamma]-ray bursts (GRBs) are uniquely powerful explosions at cosmological distances. As they mark the deaths of massive stars, they act as beacons of star formation and point out faint galaxies in the distant universe. Thus, they allow us to probe the conditions and the evolution of galaxy formation and metal enrichment throughout the universe. However promising as these prospects are, they need rely on a firm foundation based on the understanding of how the formation of gamma-ray bursts depend on the galactic environments. That is, do GRBs trace all star formation, or are they biased to metal poor and low mass hosts? Here I will explore the host galaxies of these events in order to understand how they relate to the properties of their galaxy populations. Like gamma ray bursts, core-collapse supernovae (CCSN) are the "grand-finale" of the life of massive stars. Providing a census of all massive star formation, they are an ideal control group to compare GRB hosts with at low redshifts. I employ this method to compare restframe properties of the host populations, concluding that GRB hosts are in comparison to CCSN hosts drawn from a compact, low mass and irregular galaxy population. This suggests an inherent bias amongst GRB progenitors, and that they prefer low metallicity environments. Furthermore, the GRB locations on their hosts have higher surface luminosities than for CCSNe, suggesting that GRB progenitors are more massive and short lived than those of CCSNe. Although the low redshift sample only appear to trace star formation in sub-luminous irregular galaxies, I will also show that this need not be strictly true everywhere: I will study the luminosity-metallicity and mass-metallicity relations of GRB hosts up to z ~ 6, and show that at high redshift where the universal metallicity is lower than in the present day universe, GRB hosts appear to follow the metallicity relations of that era. While GRBs might be biased tracers of star formation in the local universe, this suggests that above z ~> 3, the universal metal enrichment is low enough that GRBs trace all star formation. Even at intermediate redshift, I will show that not all GRB hosts are blue and sub-luminous. The host of the dark burst GRB080207 is extremely red, massive and with high inferred dust and gas content. I will discuss how the difficulties of obtaining accurate positions for highly extinguished bursts may have adversely affected host samples and follow-up strategies, and show that the increasing number of well studied dark burst suggest that many of them are massive and dust rich. This implies that, even at lower redshifts, a complete census of all GRBs may trace a higher fraction of star formation then inferred by only optically bright bursts.