On the Distribution and Continuity of Water Substance in Atmosphere Circulations


Book Description

The objects of the American Meteorological Society are "the development and dissemination of knowledge of meteorology in all its phases and applications, and the advancement of its professional ideals." The organization of the Society took place in affiliation with the American Association for the Advancement of Science at Saint Louis, Missouri, December 29, 1919, and its incorporation, at Washington, D. C., January 21, 1920. The work of the Society is carried on by the Bulletin, the Journal, and Meteorological Monographs, by papers and discussions at meetings of the Society, through the offices of the Secretary and the Executive Secretary, and by correspondence. All of the Americas are represented in the membership of the Society as well as many foreign countries.




Mesoscale Meteorological Modeling


Book Description

To effectively utilize mesoscale dynamical simulations of the atmosphere, it is necessary to have an understanding the basic physical and mathematical foundations of the models and to have an appreciation of how a particular atmospheric system works. Mesoscale Meteorological Modeling provides such an overview of mesoscale numerical modeling. Starting with fundamental concepts, this text can be used to evaluate the scientific basis of any simulation model that has been or will be developed. Basic material is provided for the beginner as well as more in-depth treatment for the specialist. This text is useful to both the practitioner and the researcher of the mesoscale phenomena.




CACGP Symposium on Tropospheric Chemistry with Emphasis on Sulphur and Nitrogen Cycles and the Chemistry of Clouds and Precipitation


Book Description

CACGP Symposium on Tropospheric Chemistry contains papers presented at the Symposium on ""Tropospheric Chemistry with Emphasis on Sulphur and Nitrogen Cycles and the Chemistry of Clouds and Precipitation"". Organized into 24 chapters, this book begins with a discussion on the trace gas and aerosol measurements at a remote site in the northeast U.S.; satellite measurements of aerosol mass and transport; and measurements of reactive nitrogen compounds in the free troposphere. Subsequent chapters explore kinetic study of reactions of some organic sulfur compounds with OH radicals; analysis of precipitation collected on a sequential basis; and measurements of the chemical composition of stratiform clouds. The book also discusses sulfur isotope ratio studies in a geothermal region; the oxidation of isoprene in the troposphere; a 2-D model of global aerosol transport; and theoretical studies of intermediates in sulfur oxidation cycle.




Monthly Weather Review


Book Description




Thermodynamics of Atmospheres and Oceans


Book Description

Basic Concepts: Composition, Structure, and State. First and Second Laws of Thermodynamics. Transfer Processes. Thermodynamics of Water. Nucleation and Diffusional Growth. Moist Thermodynamics Processes in the Atmosphere. Static Stability of the Atmosphere and Ocean. Cloud Characteristics and Processes. Ocean Surface Exchanges of Heat and Freshwater. Sea, Ice, Snow, and Glaciers. Thermohaline Processes in the Ocean. Special Topics: Global Energy and Entropy Balances. Thermodynamics Feedbacks in the Climate System. Planetary Atmospheres and Surface Ice. Appendices. Subject Index.




Cloud Dynamics


Book Description

As models of the Earth/atmosphere system and observations become ever more sophisticated, and concerns about climate change and societal impacts of extreme weather and its forecasting grow, understanding the role of clouds in the atmosphere is increasingly vital. Cloud Dynamics, Second Edition provides the essential information needed to understand how clouds affect climate and weather. This comprehensive book examines the underlying physics and dynamics of every specific type of cloud that occurs in the Earth's atmosphere, showing how clouds differ dynamically depending on whether they occur over oceans or mountains, or as parts of atmospheric storms, such as thunderstorms, tropical cyclones, or warm and cold fronts. Covering both the microphysical and macrophysical aspects of clouds, the book treats all of the physical scales involved in cloud processes, from the microscale of the individual drops and ice particles up to scales of storms in which the clouds occur. As observational technology advances with increasingly sophisticated remote sensing capabilities, detailed understanding of how the dynamics and physics of clouds affect the quantities being measured is of paramount importance. This book underpins the work necessary for proper interpretation of these observations, now and in the future. - Provides the holistic understanding of clouds needed to pursue research on topics vital to life on Earth - Provides in-depth understanding of all types of clouds over all regions of Earth, from the poles to the equator - Includes detailed physical and dynamical insight into the entire spectrum of clouds populating Earth's atmosphere




Air Quality in Cities


Book Description

Urban areas are major sources of air pollution. Pollutant emissions affecting air quality in cities are considered to have adverse consequences for human health. Public and government concern about environmental issues arising from urban air pollution has increased over the last decades. The urban air pollution problem is widespread throughout the world and it is important to find ways of eliminating or at least reducing the risks for human health. The fundamentals of the physical and chemical processes occurring during air pollutant transport in the atmosphere are nowadays understood to a large extent. In particular, modelling of such processes has experienced a remarkable growth in the last decades. Monitoring capabilities have also improved markedly in the most urban areas around the world. However, neither modelling nor monitoring can solve urban air pollution problems, as they are only a first step in improving useful information for future regulations. The defining of efficient control strategies can not be achieved without a clear knowledge of the complete pollution process, i.e. emission, atmospheric transport and transformation, and deposition at the receptor. Improving our ability to establish valid urban scale source-receptor relation ships has been the objective of SA TURN, one of the 14 subprojects of EURO TRAC-2. Similar to the other subprojects of this co-ordinated environmental pro ject within the EUREKA initiative, SA TURN brought together international groups of scientists to work on problems directly related to atmospheric chemistry and physics. The present volume summarises the scientific results of SATURN.




Physical Processes in Clouds and Cloud Modeling


Book Description

This book presents the most comprehensive and systematic description currently available of both classical and novel theories of cloud processes, providing a much-needed link between cloud theory, observation, experimental results, and cloud modeling. This volume shows why and how modern models serve as a major tool of investigation of cloud processes responsible for atmospheric phenomena, including climate change. It systematically describes classical as well as recent advancements in cloud physics, including cloud-aerosol interaction; collisions of particles in turbulent clouds; and the formation of multiphase cloud particles. As the first of its kind to serve as a practical guide for using state-of-the-art numerical cloud models, major emphasis is placed on explaining how microphysical processes are treated in modern numerical cloud resolving models. The book will be a valuable resource for advanced students, researchers and numerical model designers in cloud physics, atmospheric science, meteorology, and environmental science.




Rainfall


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 191. Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.




High Performance Computing in Science and Engineering ' 07


Book Description

This book presents the state-of-the-art in simulation on supercomputers. Leading researchers present results achieved on systems of the Stuttgart High Performance Computing Center in 2007. The reports cover all fields of computational science and engineering, with emphasis on industrially relevant applications. Presenting results for both vector-based and microprocessor-based systems, the book allows comparison between performance levels and usability of various architectures.