Book Description
A major aim of this book is to present the theory of combinatorial geometry in a form accessible to mathematicians working in disparate subjects.
Author : Henry H. Crapo
Publisher : MIT Press (MA)
Page : 350 pages
File Size : 47,46 MB
Release : 1970
Category : Mathematics
ISBN :
A major aim of this book is to present the theory of combinatorial geometry in a form accessible to mathematicians working in disparate subjects.
Author : Neil White
Publisher : Cambridge University Press
Page : 230 pages
File Size : 11,90 MB
Release : 1987-09-24
Category : Mathematics
ISBN : 9780521333399
This book is a continuation of Theory of Matroids (also edited by Neil White), and again consists of a series of related surveys that have been contributed by authorities in the area. The volume begins with three chapters on coordinatisations, followed by one on matching theory. The next two deal with transversal and simplicial matroids. These are followed by studies of the important matroid invariants. The final chapter deals with matroids in combinatorial optimisation, a topic of much current interest. The whole volume has been carefully edited to ensure a uniform style and notation throughout, and to make a work that can be used as a reference or as an introductory textbook for graduate students or non-specialists.
Author : Jacob E. Goodman
Publisher : Cambridge University Press
Page : 640 pages
File Size : 18,89 MB
Release : 2005-08-08
Category : Computers
ISBN : 9780521848626
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Author : Martin Aigner
Publisher : Springer Science & Business Media
Page : 489 pages
File Size : 35,56 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 1461566665
It is now generally recognized that the field of combinatorics has, over the past years, evolved into a fully-fledged branch of discrete mathematics whose potential with respect to computers and the natural sciences is only beginning to be realized. Still, two points seem to bother most authors: The apparent difficulty in defining the scope of combinatorics and the fact that combinatorics seems to consist of a vast variety of more or less unrelated methods and results. As to the scope of the field, there appears to be a growing consensus that combinatorics should be divided into three large parts: (a) Enumeration, including generating functions, inversion, and calculus of finite differences; (b) Order Theory, including finite posets and lattices, matroids, and existence results such as Hall's and Ramsey's; (c) Configurations, including designs, permutation groups, and coding theory. The present book covers most aspects of parts (a) and (b), but none of (c). The reasons for excluding (c) were twofold. First, there exist several older books on the subject, such as Ryser [1] (which I still think is the most seductive introduction to combinatorics), Hall [2], and more recent ones such as Cameron-Van Lint [1] on groups and designs, and Blake-Mullin [1] on coding theory, whereas no compre hensive book exists on (a) and (b).
Author : Lucien Marie Le Cam
Publisher : Univ of California Press
Page : 664 pages
File Size : 21,52 MB
Release : 1972
Category : Biometry
ISBN : 9780520021846
Author : Victor Reiner
Publisher : American Mathematical Soc.
Page : 842 pages
File Size : 40,11 MB
Release : 2017-05-17
Category : Mathematics
ISBN : 1470416824
Richard Stanley's work in combinatorics revolutionized and reshaped the subject. Many of his hallmark ideas and techniques imported from other areas of mathematics have become mainstays in the framework of modern combinatorics. In addition to collecting several of Stanley's most influential papers, this volume also includes his own short reminiscences on his early years, and on his celebrated proof of The Upper Bound Theorem.
Author : KUNG
Publisher : Springer Science & Business Media
Page : 400 pages
File Size : 48,14 MB
Release : 2013-11-09
Category : Mathematics
ISBN : 1468491997
by Gian-Carlo Rota The subjects of mathematics, like the subjects of mankind, have finite lifespans, which the historian will record as he freezes history at one instant of time. There are the old subjects, loaded with distinctions and honors. As their problems are solved away and the applications reaped by engineers and other moneymen, ponderous treatises gather dust in library basements, awaiting the day when a generation as yet unborn will rediscover the lost paradise in awe. Then there are the middle-aged subjects. You can tell which they are by roaming the halls of Ivy League universities or the Institute for Advanced Studies. Their high priests haughtily refuse fabulous offers from eager provin cial universities while receiving special permission from the President of France to lecture in English at the College de France. Little do they know that the load of technicalities is already critical, about to crack and submerge their theorems in the dust of oblivion that once enveloped the dinosaurs. Finally, there are the young subjects-combinatorics, for instance. Wild eyed individuals gingerly pick from a mountain of intractable problems, chil dishly babbling the first words of what will soon be a new language. Child hood will end with the first Seminaire Bourbaki. It could be impossible to find a more fitting example than matroid theory of a subject now in its infancy. The telltale signs, for an unfailing diagnosis, are the abundance of deep theorems, going together with a paucity of theories.
Author : Ronald L. Graham
Publisher : Elsevier
Page : 1124 pages
File Size : 42,81 MB
Release : 1995-12-11
Category : Business & Economics
ISBN : 9780444823465
Handbook of Combinatorics, Volume 1 focuses on basic methods, paradigms, results, issues, and trends across the broad spectrum of combinatorics. The selection first elaborates on the basic graph theory, connectivity and network flows, and matchings and extensions. Discussions focus on stable sets and claw free graphs, nonbipartite matching, multicommodity flows and disjoint paths, minimum cost circulations and flows, special proof techniques for paths and circuits, and Hamilton paths and circuits in digraphs. The manuscript then examines coloring, stable sets, and perfect graphs and embeddings and minors. The book takes a look at random graphs, hypergraphs, partially ordered sets, and matroids. Topics include geometric lattices, structural properties, linear extensions and correlation, dimension and posets of bounded degree, hypergraphs and set systems, stability, transversals, and matchings, and phase transition. The manuscript also reviews the combinatorial number theory, point lattices, convex polytopes and related complexes, and extremal problems in combinatorial geometry. The selection is a valuable reference for researchers interested in combinatorics.
Author : Hans Rademacher
Publisher : MIT Press
Page : 680 pages
File Size : 11,76 MB
Release : 1974
Category : Business & Economics
ISBN : 9780262070553
These two volumes contain all the papers published by Hans Rademacher, either alone or as joint author, essentially in chronological order. Included also are a collection of published abstracts, a number of papers that appeared in institutes and seminars but are only now being formally published, and several problems posed and/or solved by Rademacher. The editor has provided notes for each paper, offering comments and making corrections. He has also contributed a biographical sketch. The earlier papers are on real variables, measurability, convergence factors, and Euler summability of series. This phase of Rademacher's work culminates in a paper of 1922, in which he introduced the systems of orthogonal functions now known as the Rademacher functions. After this, a new period in Rademacher's career began, and his major effort was devoted to the theory of functions of a complex variable and number theory. Some of his most important contributions were made in these fields. He perfected the sieve method and used it skillfully in the study of algebraic number fields; he studied the additive prime number theory of these fields; he generalized Goldbach's Problem; and he began his work on the theory of the Riemann zeta function, modular functions, and Dedekind sums (now often&-and justly&-called Dedekind-Rademacher sums). To this period also becomes what has become known as the Rademacher-Brauer formula. Rademacher came to the United States as a refugee in 1934. In the years that followed, he obtained some of his most important results in connection with the Fourier coefficients of modular forms of positive dimensions. His general method may be considered a modification and improvement of the Hardy-Ramanujan-Littlewood circle method. He also published additional papers on Dedekind-Rademacher sums (with A. Whiteman), general number theory (with H. S. Zuckerman), and modular functions (also with Zuckerman). During the last decade of his life&-the 1960s&-he continued his work on these problems and devoted considerable attention to general analysis&-especially harmonic analysis&-and to analytic number theory. All of the papers in Volume I and ten of those in Volume II are in German. One paper is in Hungarian. The volumes are part of the MIT Press series Mathematicians of Our Time (Gian-Carlo Rota, general editor).
Author : Matthias Beck
Publisher : American Mathematical Soc.
Page : 325 pages
File Size : 16,42 MB
Release : 2018-12-12
Category : Mathematics
ISBN : 147042200X
Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.