On the Lagrangian Description of Unsteady Boundary Layer Separation. Part 1


Book Description

Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer. Vandommelen, Leon L. and Cowley, Stephen J. Glenn Research Center NASA-SAA-C-99066-G; RTOP 505-62-21...










On the Lagrangian Description of Unsteady Boundary Layer Separation. Part 2


Book Description

A theory to explain the initial stages of unsteady separation was proposed by Van Dommelen and Cowley (1989). This theory is verified for the separation process that occurs at the equatorial plane of a sphere or a spheroid which is impulsively spun around an axis of symmetry. A Lagrangian numerical scheme is developed which gives results in good agreement with Eulerian computations, but which is significantly more accurate. This increased accuracy, and a simpler structure to the solution, also allows verification of the Eulerian structure, including the presence of logarithmic terms. Further, while the Eulerian computations broke down at the first occurrence of separation, it is found that the Lagrangian computation can be continued. It is argued that this separated solution does provide useful insight into the further evolution of the separated flow. A remarkable conclusion is that an unseparated vorticity layer at the wall, a familiar feature in unsteady separation processes, disappears in finite time. Vandommelen, Leon L. Glenn Research Center ...




On the Use of Lagrangian Variables in Descriptions of Unsteady Boundary-Layer Separation


Book Description

The Lagrangian description of unsteady boundary layer separation is reviewed from both analytical and numerical perspectives. It is explained in simple terms how particle distortion gives rise to unsteady separation, and why a theory centered on Lagrangian coordinates provides the clearest description of this phenomenon. Some of the more recent results for unsteady three dimensional compressible separation are included. The different forms of separation that can arise from symmetries are emphasized. A possible description of separation is also included when the detaching vorticity layer exits the classical boundary layer region, but still remains much closer to the surface than a typical body-lengthscale. Cowley, Stephen J. and Vandommelen, Leon L. and Lam, Shui T. Unspecified Center...










Aerodynamics And Aeroacoustics - Proceedings Of The Symposium


Book Description

The aim of the symposium was to gather fellow researchers, colleagues and friends of Professor William R Sears, a member of the National Academy of Science and the Academy of Engineering, on the occasion of his 80th birthday. Professor Sears is a leader in Aerospace Science and Aerodynamics research and the symposium was held in honour of his work in these areas.The symposium focussed on four areas in aeronautical science in which Professor Sears has made major contributions. These are wing design, unsteady aerodynamics and separation, aeroacoustics and self-correcting wind tunnels.




Vortex Dynamics and Vortex Methods


Book Description

Understanding vortex dynamics is the key to understanding much of fluid dynamics. For this reason, many researchers, using a great variety of different approaches--analytical, computational, and experimental--have studied the dynamics of vorticity. The AMS-SIAM Summer Seminar on Vortex Dynamics and Vortex Methods, held in June 1990 at the University of Washington in Seattle, brought together experts with a broad range of viewpoints and areas of specialization. This volume contains the proceedings from that seminar. The focus here is on the numerical computation of high Reynolds number incompressible flows. Also included is a smaller selection of important experimental results and analytic treatments. Many of the articles contain valuable introductory and survey material as well as open problems. Readers will appreciate this volume for its coverage of a wide variety of numerical, analytical, and experimental tools and for its treatment of interesting important discoveries made with these tools.




Mechanics for a New Millennium


Book Description

This volume contains the proceedings of the 2000 International Congress of Theoretical and Applied Mechanics. The book captures a snapshot view of the state of the art in the field of mechanics and will be invaluable to engineers and scientists from a variety of disciplines.