Optical Computer Architectures


Book Description

Optics is entering all phases of computer technology. By providing new research and ideas, it brings the reader up to date on how and why optics is likely to be used in next generation computers and at the same time explains the unique advantage optics enjoys over conventional electronics and why this trend will continue. Covered are basic optical concepts such as mathematical derivations, optical devices for optical computing, optical associative memories, optical interconnections, and optical logic. Also suggested are a number of research activities that are reinforcing the trend toward optics in computing, including neural networks, the software crisis, highly parallel computation, progress in new semiconductors, the decreasing cost of laser diodes, communication industry investments in fiber optics, and advances in optical devices. Exercises, solutions sets, and examples are provided.




Optical Computing


Book Description

Written by ten leading experts in the field, Optical Computing cover topics such as optical bistability, optical interconnects and circuits, photorefractive devices, spatial light modulators, associative memory, and optical computer architectures.




Photonic Reservoir Computing


Book Description

Photonics has long been considered an attractive substrate for next generation implementations of machine-learning concepts. Reservoir Computing tremendously facilitated the realization of recurrent neural networks in analogue hardware. This concept exploits the properties of complex nonlinear dynamical systems, giving rise to photonic reservoirs implemented by semiconductor lasers, telecommunication modulators and integrated photonic chips.




Optical Computing Hardware


Book Description

Optical Computing Hardware provides information pertinent to the advances in the development of optical computing hardware. This book discusses the two application areas, namely, high-performance computing and high-throughput photonic switching. Organized into 11 chapters, this book begins with an overview of the requirements on hardware from s system perspective. This text then presents the self-electro-optic-effect devices (SPEED), the vertical-cavity-surface- emitting microlasers (VCSEL), and the vertical-to-surface transmission electrophotonic device (VSTEP). Other chapters consider the fundamental principles of the devices and their operation either as logic devices or for optical interconnection applications. This book discusses as well the planar optical microlens as an example of a refractive microlens of the gradient-index type and explains the diffractive optical elements. The final chapter describes a method for writing and reading optically in parallel from a three-dimensional matrix by means of two-photon interaction in photochromic organic materials. This book is a valuable resource for engineers, scientists, and researchers.




Advanced Computer Architectures


Book Description

Despite the tremendous advances in performance enabled by modern architectures, there are always new applications and demands arising that require ever-increasing capabilities. Keeping up with these demands requires a deep-seated understanding of contemporary architectures in concert with a fundamental understanding of basic principles that allows one to anticipate what will be possible over the system's lifetime. Advanced Computer Architectures focuses on the design of high performance supercomputers with balanced coverage of the hardware, software structures, and application characteristics. This book is a timeless distillation of underlying principles punctuated by real-world implementations in popular current and past commercially available systems. It briefly reviews the basics of uniprocessor architecture before outlining the most popular processing paradigms, performance evaluation, and cost factor considerations. This builds to a discussion of pipeline design and vector processors, data parallel architectures, and multiprocessor systems. Rounding out the book, the final chapter explores some important current and emerging trends such as Dataflow, Grid, biology-inspired, and optical computing. More than 220 figures, tables, and equations illustrate the concepts presented. Based on the author's more than thirty years of teaching and research, Advanced Computer Architectures endows you with the tools necessary to reach the limits of existing technology, and ultimately, to break them.




Digital Coherent Optical Systems


Book Description

This textbook details the architecture of a digital coherent optical system and describes its main digital signal processing (DSP) algorithms. The authors first show how the combination of advanced modulation techniques, DSP and coherent detection has led to significant gains in capacity and ease of operation. The authors follow the path of the information from its generation in the transmitter, to propagation through the fiber and processing by the DSP algorithms in the receiver. The work summarizes academic results and presents them in a didactic way to students and practitioners working on the area of optical communications. A full suite of classroom materials is included for easy integration into a curriculum, containing theoretic and simulation problems, and off-the-shelf Matlab/Octave functions.




Design of Optical WDM Networks


Book Description

Lo, soul! seest thou not God's purpose from the first? The earth to be spann'd, connected by net-work From Passage to India! Walt Whitman, "Leaves of Grass", 1900. The Internet is growing at a tremendous rate today. New services, such as telephony and multimedia, are being added to the pure data-delivery framework of yesterday. Such high demands on capacity could lead to a "bandwidth-crunch" at the core wide-area network resulting in degra dation of service quality. Fortunately, technological innovations have emerged which can provide relief to the end-user to overcome the In ternet's well-known delay and bandwidth limitations. At the physical layer, a major overhaul of existing networks has been envisaged from electronic media (such as twisted-pair and cable) to optical fibers - in the wide area, in the metropolitan area, and even in the local area set tings. In order to exploit the immense bandwidth potential of the optical fiber, interesting multiplexing techniques have been developed over the years. Wavelength division multiplexing (WDM) is such a promising tech nique in which multiple channels are operated along a single fiber si multaneously, each on a different wavelength. These channels can be independently modulated to accommodate dissimilar bit rates and data formats, if so desired. Thus, WDM carves up the huge bandwidth of an optical fiber into channels whose bandwidths (1-10 Gbps) are compati ble with peak electronic processing speed.







An Introduction to Optics in Computers


Book Description

This volume surveys the entire field of optical computing. The emphasis is on breadth of coverage. The book is descriptive, the authors minimize the use of mathematics, and it is therefore most suitable for those who require an overall view of what is going on in this field. A detailed comparison is given of the capabilities of electronics and optics, and the degree to which these capabilities have been achieved is indicated. Other areas of focus include optical computing architectures, components and technologies, optical interconnects, and optical neural nets. Approximately 300 references to key works in the field are included.




Silicon Photonics for High-Performance Computing and Beyond


Book Description

Silicon photonics is beginning to play an important role in driving innovations in communication and computation for an increasing number of applications, from health care and biomedical sensors to autonomous driving, datacenter networking, and security. In recent years, there has been a significant amount of effort in industry and academia to innovate, design, develop, analyze, optimize, and fabricate systems employing silicon photonics, shaping the future of not only Datacom and telecom technology but also high-performance computing and emerging computing paradigms, such as optical computing and artificial intelligence. Different from existing books in this area, Silicon Photonics for High-Performance Computing and Beyond presents a comprehensive overview of the current state-of-the-art technology and research achievements in applying silicon photonics for communication and computation. It focuses on various design, development, and integration challenges, reviews the latest advances spanning materials, devices, circuits, systems, and applications. Technical topics discussed in the book include: • Requirements and the latest advances in high-performance computing systems • Device- and system-level challenges and latest improvements to deploy silicon photonics in computing systems • Novel design solutions and design automation techniques for silicon photonic integrated circuits • Novel materials, devices, and photonic integrated circuits on silicon • Emerging computing technologies and applications based on silicon photonics Silicon Photonics for High-Performance Computing and Beyond presents a compilation of 19 outstanding contributions from academic and industry pioneers in the field. The selected contributions present insightful discussions and innovative approaches to understand current and future bottlenecks in high-performance computing systems and traditional computing platforms, and the promise of silicon photonics to address those challenges. It is ideal for researchers and engineers working in the photonics, electrical, and computer engineering industries as well as academic researchers and graduate students (M.S. and Ph.D.) in computer science and engineering, electronic and electrical engineering, applied physics, photonics, and optics.