Optical Computing Hardware


Book Description

Optical Computing Hardware provides information pertinent to the advances in the development of optical computing hardware. This book discusses the two application areas, namely, high-performance computing and high-throughput photonic switching. Organized into 11 chapters, this book begins with an overview of the requirements on hardware from s system perspective. This text then presents the self-electro-optic-effect devices (SPEED), the vertical-cavity-surface- emitting microlasers (VCSEL), and the vertical-to-surface transmission electrophotonic device (VSTEP). Other chapters consider the fundamental principles of the devices and their operation either as logic devices or for optical interconnection applications. This book discusses as well the planar optical microlens as an example of a refractive microlens of the gradient-index type and explains the diffractive optical elements. The final chapter describes a method for writing and reading optically in parallel from a three-dimensional matrix by means of two-photon interaction in photochromic organic materials. This book is a valuable resource for engineers, scientists, and researchers.




Optical Computer Architectures


Book Description

Optics is entering all phases of computer technology. By providing new research and ideas, it brings the reader up to date on how and why optics is likely to be used in next generation computers and at the same time explains the unique advantage optics enjoys over conventional electronics and why this trend will continue. Covered are basic optical concepts such as mathematical derivations, optical devices for optical computing, optical associative memories, optical interconnections, and optical logic. Also suggested are a number of research activities that are reinforcing the trend toward optics in computing, including neural networks, the software crisis, highly parallel computation, progress in new semiconductors, the decreasing cost of laser diodes, communication industry investments in fiber optics, and advances in optical devices. Exercises, solutions sets, and examples are provided.




Optical Computing


Book Description

Optical Computers provides the first in-depth review of the possibilities and limitations of optical data processing.




Photonic Reservoir Computing


Book Description

Photonics has long been considered an attractive substrate for next generation implementations of machine-learning concepts. Reservoir Computing tremendously facilitated the realization of recurrent neural networks in analogue hardware. This concept exploits the properties of complex nonlinear dynamical systems, giving rise to photonic reservoirs implemented by semiconductor lasers, telecommunication modulators and integrated photonic chips.




Neuromorphic Photonics


Book Description

This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.




Galileo Unbound


Book Description

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.




Quantum Computing


Book Description

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.




A Hardware Compiler for Digital Optical Computing


Book Description

A hardware compiler for translating descriptions of digital circuits from a hardware description language (HDL) into gate-level layouts is under development at Rutgers University. The layouts are customized for optical processors that make use of arrays of optical logic gates interconnected in free-space with regular interconnection patterns such as perfect shuffles, crossovers, or global interconnects. Specific processors that the hardware compiler supports include the S-SEED based all-optical processor developed at AT & T Bell Labs, the S-SEED based all-optical processor under development at the Photonics Center at RADC/Griffiss AFB, and the acousto-optical modulator based RISC processor under development at OptiComp Corporation.




Real-Time Optical Information Processing


Book Description

Real-Time Optical Information Processing covers the most recent developments in optical information processing, pattern recognition, neural computing, and materials for devices in optical computing. Intended for researchers and graduate students in signal and information processing with some elementary background in optics, the book provides both theoretical and practical information on the latest in information processing in all its aspects. Leading researchers in the field describe the significant signal processing algorithms architectures in optics as well as basic hardware concepts, such as the fundamentals of spatial light modulators. Each chapter begins with a review of basic concepts and follows with a discussion of recent advances in the field. A complete bibliography on the fundamentals of each topic is also included to aid the reader.Contributors are among the leading researchers in the areaChapters begin with reviews of basic conceptsComplete bibliographical information is included




Optical SuperComputing


Book Description

OCS, the International Workshop on Optical SuperComputing, is a new annual forum for research presentations on all facets of optical computing for solving hard computation tasks. Optical computing devices have the potential to build the very next computing infrastructure. Given the frequency limitations and cross-talk phenomena, as well as the soft-errors, of electronic devices on one hand, and the natural parallelism of optical computing devices, as well as the advances in ?ber optics and optical switches, on the other hand, optical c- puting is becoming increasingly marketable. The focus of the workshop is on research surrounding the theory, design, speci?cation, analysis, implementation, and application of optical supercomputers. Topics of interest include, but are not limited to: design of optical computing devices; electro-optics devices for interacting with optical computing devices; practical implementations; analysis of existing devices and case studies; optical and laser switching technologies; applications and algorithms for optical devices; and alpha practical, x-rays and nano-technologies for optical computing. The First OSC workshop was held on August 26th, 2008, in Vienna, Austria, co-located with the 7th International Conference on Unconventional Computing. This volume contains eight contributions selected by the program committee andtwoinvitedpapers. Allsubmittedpaperswerereadandevaluatedbyatleast three program committee members, assisted by external reviewers. The review process was aided by the EasyChair system. OSC 2008 was organized in cooperation with OSA the Optical Society of America. The support of Ben-Gurion University and Babe?-Bolyai University is also gratefully acknowledged.