Optical Computing Hardware


Book Description

Optical Computing Hardware provides information pertinent to the advances in the development of optical computing hardware. This book discusses the two application areas, namely, high-performance computing and high-throughput photonic switching. Organized into 11 chapters, this book begins with an overview of the requirements on hardware from s system perspective. This text then presents the self-electro-optic-effect devices (SPEED), the vertical-cavity-surface- emitting microlasers (VCSEL), and the vertical-to-surface transmission electrophotonic device (VSTEP). Other chapters consider the fundamental principles of the devices and their operation either as logic devices or for optical interconnection applications. This book discusses as well the planar optical microlens as an example of a refractive microlens of the gradient-index type and explains the diffractive optical elements. The final chapter describes a method for writing and reading optically in parallel from a three-dimensional matrix by means of two-photon interaction in photochromic organic materials. This book is a valuable resource for engineers, scientists, and researchers.




Photonic Reservoir Computing


Book Description

Photonics has long been considered an attractive substrate for next generation implementations of machine-learning concepts. Reservoir Computing tremendously facilitated the realization of recurrent neural networks in analogue hardware. This concept exploits the properties of complex nonlinear dynamical systems, giving rise to photonic reservoirs implemented by semiconductor lasers, telecommunication modulators and integrated photonic chips.




Optical Computing


Book Description

Optical Computers provides the first in-depth review of the possibilities and limitations of optical data processing.




Galileo Unbound


Book Description

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.




Quantum Computing


Book Description

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.




Neuromorphic Photonics


Book Description

This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.




Optical Computer Architectures


Book Description

Optics is entering all phases of computer technology. By providing new research and ideas, it brings the reader up to date on how and why optics is likely to be used in next generation computers and at the same time explains the unique advantage optics enjoys over conventional electronics and why this trend will continue. Covered are basic optical concepts such as mathematical derivations, optical devices for optical computing, optical associative memories, optical interconnections, and optical logic. Also suggested are a number of research activities that are reinforcing the trend toward optics in computing, including neural networks, the software crisis, highly parallel computation, progress in new semiconductors, the decreasing cost of laser diodes, communication industry investments in fiber optics, and advances in optical devices. Exercises, solutions sets, and examples are provided.




Code


Book Description

The classic guide to how computers work, updated with new chapters and interactive graphics "For me, Code was a revelation. It was the first book about programming that spoke to me. It started with a story, and it built up, layer by layer, analogy by analogy, until I understood not just the Code, but the System. Code is a book that is as much about Systems Thinking and abstractions as it is about code and programming. Code teaches us how many unseen layers there are between the computer systems that we as users look at every day and the magical silicon rocks that we infused with lightning and taught to think." - Scott Hanselman, Partner Program Director, Microsoft, and host of Hanselminutes Computers are everywhere, most obviously in our laptops and smartphones, but also our cars, televisions, microwave ovens, alarm clocks, robot vacuum cleaners, and other smart appliances. Have you ever wondered what goes on inside these devices to make our lives easier but occasionally more infuriating? For more than 20 years, readers have delighted in Charles Petzold's illuminating story of the secret inner life of computers, and now he has revised it for this new age of computing. Cleverly illustrated and easy to understand, this is the book that cracks the mystery. You'll discover what flashlights, black cats, seesaws, and the ride of Paul Revere can teach you about computing, and how human ingenuity and our compulsion to communicate have shaped every electronic device we use. This new expanded edition explores more deeply the bit-by-bit and gate-by-gate construction of the heart of every smart device, the central processing unit that combines the simplest of basic operations to perform the most complex of feats. Petzold's companion website, CodeHiddenLanguage.com, uses animated graphics of key circuits in the book to make computers even easier to comprehend. In addition to substantially revised and updated content, new chapters include: Chapter 18: Let's Build a Clock! Chapter 21: The Arithmetic Logic Unit Chapter 22: Registers and Busses Chapter 23: CPU Control Signals Chapter 24: Jumps, Loops, and Calls Chapter 28: The World Brain From the simple ticking of clocks to the worldwide hum of the internet, Code reveals the essence of the digital revolution.




Fundamentals of Optical Computing Technology


Book Description

This book presents the principles, experimental technologies, up-to-date research findings and applications of various optical-computing technologies and devices. It also discusses semiconductor multiple quantum well (MQW) photoelectronic devices, vertical-cavity surface-emitting lasers (VCSELs), lasers, micro optical elements and diffractive optical elements, optical storage, optical parallel interconnections, and optical-buffer technology as the main technologies for optical computing. Furthermore, it explores the potential of optical-computing technology. It offers those involved in optical design, photonics, and photoelectronic research and related industries insights into the fundamentals and theories of optical computing, enabling them and to extend and develop the functions of fundamental elements to meet the requirement of optical-computing systems.




The Elements of Computing Systems


Book Description

This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system.