Optical Spectroscopy of Strongly Correlated Transition-metal Oxides
Author : Ralf Rauer
Publisher : Cuvillier Verlag
Page : 131 pages
File Size : 19,64 MB
Release : 2005
Category :
ISBN : 3865376681
Author : Ralf Rauer
Publisher : Cuvillier Verlag
Page : 131 pages
File Size : 19,64 MB
Release : 2005
Category :
ISBN : 3865376681
Author : Ralf Rauer
Publisher : Cuvillier Verlag
Page : 129 pages
File Size : 35,96 MB
Release : 2005-02-15
Category : Science
ISBN : 373691668X
Author : Adolfo Avella
Publisher : Springer
Page : 329 pages
File Size : 34,13 MB
Release : 2014-10-01
Category : Science
ISBN : 3662441330
The continuous evolution and development of experimental techniques is at the basis of any fundamental achievement in modern physics. Strongly correlated systems (SCS), more than any other, need to be investigated through the greatest variety of experimental techniques in order to unveil and crosscheck the numerous and puzzling anomalous behaviors characterizing them. The study of SCS fostered the improvement of many old experimental techniques, but also the advent of many new ones just invented in order to analyze the complex behaviors of these systems. Many novel materials, with functional properties emerging from macroscopic quantum behaviors at the frontier of modern research in physics, chemistry and materials science, belong to this class of systems. The volume presents a representative collection of the modern experimental techniques specifically tailored for the analysis of strongly correlated systems. Any technique is presented in great detail by its own inventor or by one of the world-wide recognized main contributors. The exposition has a clear pedagogical cut and fully reports on the most relevant case study where the specific technique showed to be very successful in describing and enlightening the puzzling physics of a particular strongly correlated system. The book is intended for advanced graduate students and post-docs in the field as textbook and/or main reference, but also for any other researcher in the field who appreciates consulting a single, but comprehensive, source or wishes to get acquainted, in a as painless as possible way, with the working details of a specific technique.
Author : Shigemasa Suga
Publisher : Springer Nature
Page : 511 pages
File Size : 38,49 MB
Release : 2021-08-01
Category : Science
ISBN : 3030640736
This book presents photoelectron spectroscopy as a valuable method for studying the electronic structures of various solid materials in the bulk state, on surfaces, and at buried interfaces. This second edition introduces the advanced technique of high-resolution and high-efficiency spin- and momentum-resolved photoelectron spectroscopy using a novel momentum microscope, enabling high-precision measurements down to a length scale of some tens of nanometers. The book also deals with fundamental concepts and approaches to applying this and other complementary techniques, such as inverse photoemission, photoelectron diffraction, scanning tunneling spectroscopy, as well as photon spectroscopy based on (soft) x-ray absorption and resonance inelastic (soft) x-ray scattering. This book is the ideal tool to expand readers’ understanding of this marvelously versatile experimental method, as well as the electronic structures of metals and insulators.
Author : Atsushi Fujimori
Publisher : Springer Science & Business Media
Page : 272 pages
File Size : 32,54 MB
Release : 2012-12-06
Category : Technology & Engineering
ISBN : 3642578349
Extensive studies of high-Tc cuprate superconductors have stimualted investigations into various transition-metal oxides. Mott transitions in particular provide fascinating problems and new concepts in condensed matter physics. This book is a collection of overviews by well-known, active researchers in this field. It deals with the latest developments, with particular emphasis on the theoretical, spectroscopic, and transport aspects.
Author : Bob D. Guenther
Publisher : Academic Press
Page : 2253 pages
File Size : 42,24 MB
Release : 2018-02-14
Category : Technology & Engineering
ISBN : 0128149825
The Encyclopedia of Modern Optics, Second Edition, Five Volume Set provides a wide-ranging overview of the field, comprising authoritative reference articles for undergraduate and postgraduate students and those researching outside their area of expertise. Topics covered include classical and quantum optics, lasers, optical fibers and optical fiber systems, optical materials and light-emitting diodes (LEDs). Articles cover all subfields of optical physics and engineering, such as electro-optical design of modulators and detectors. This update contains contributions from international experts who discuss topics such as nano-photonics and plasmonics, optical interconnects, photonic crystals and 2D materials, such as graphene or holy fibers. Other topics of note include solar energy, high efficiency LED’s and their use in illumination, orbital angular momentum, quantum optics and information, metamaterials and transformation optics, high power fiber and UV fiber lasers, random lasers and bio-imaging. Addresses recent developments in the field and integrates concepts from fundamental physics with applications for manufacturing and engineering/design Provides a broad and interdisciplinary coverage of specialist areas Ensures that the material is appropriate for new researchers and those working in a new sub-field, as well as those in industry Thematically arranged and alphabetically indexed, with cross-references added to facilitate ease-of-use
Author : Hidetoshi Fukuyama
Publisher : Springer Science & Business Media
Page : 351 pages
File Size : 42,13 MB
Release : 2012-12-06
Category : Science
ISBN : 3642600417
Physics and Chemistry of Transition-Metal Oxides includes both theoretical and experimental approaches to the variety of phenomena found in the transition-metal oxides, including high-temperature superconductivity, colossal magnetoresistance, and metal-insulator transition. These are the central issues in materials science and condensed matter physics/chemistry, and readers can obtain up-to-date information on what is happening in this field of research.
Author : Cristiana Di Valentin
Publisher : Springer
Page : 397 pages
File Size : 36,82 MB
Release : 2014-09-26
Category : Technology & Engineering
ISBN : 3642550681
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students.
Author : Evgeny Y. Tsymbal
Publisher : OUP Oxford
Page : 416 pages
File Size : 46,22 MB
Release : 2012-08-30
Category : Science
ISBN : 0191642223
This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts. The book consists of chapters on some of the key innovations in the field over recent years, including strongly correlated oxide heterostructures, magnetoelectric coupling and multiferroic materials, thermoelectric phenomena, and two-dimensional electron gases at oxide interfaces. The book covers the core principles, describes experimental approaches to fabricate and characterize oxide heterostructures, demonstrates new functional properties of these materials, and provides an overview of novel applications.
Author : Shibing Wang
Publisher : Stanford University
Page : 110 pages
File Size : 49,42 MB
Release : 2011
Category :
ISBN :
Recent advances in high pressure diamond anvil cell techniques and synchrotron radiation characterization methods have enabled investigation of a wide range of materials properties in-situ under extreme conditions. High pressure studies have made significant contribution to our understanding in a number of scientific fields, e.g. condensed matter physics, chemistry, Earth and planetary sciences, and material sciences. Pressure, as a fundamental thermodynamic variable, can induce changes in the electronic and structural configuration of a material, which in turn can dramatically alter its properties. The novel phases and new compounds existing at high pressure have improved our basic understanding of bonding and interactions in condensed matter. This dissertation focuses on how pressure affects materials' bonding and electronic structures in two types of systems: hydrogen rich molecular compounds and strongly correlated transition metal oxides. The interaction of boranes and hydrogen was studied using optical microscopy and Raman spectroscopy and their hydrogen storage potential is discussed in the context of practical applications. The pressure-induced behavior of the SiH4 + H2 binary system and the formation of a newly formed compound SiH4(H2)2 were investigated using a combination of optical microscopy, Raman spectroscopy and x-ray diffraction. The experimental work along with DFT calculations on the electronic properties of the compound up to the possible metallization pressure, indicated that there are strong intermolecular interactions between SiH4 and H2 in the condensed phase. By using a newly developed synchrotron x-ray spectroscopy technique, we were able to follow the evolution of the 3d band of a 3d transition metal oxide, Fe2O3 under pressure, which experiences a series of structural, electronic and spin transitions at approximately 50 GPa. Together with theoretical calculations we revisited its electronic phase transition mechanism, and found that the electronic transitions are reflected in the pre-edge region.