Optically Active Polymers


Book Description

The first four volumes of the series on 'Charged and Reactive Polymers' have been devoted to polymers in solution (Voh. I and II) or in gel and membrane forms (Vols. III and IV). In correlation with charges, other physical or chemical properties of macro molecules have been considered. Understanding of charge and hydrophobic effects is equally important for synthetic and biopolymers or their systems. Optically Active Polymers are related to problems of the same class, since optical activity is an inherent property of both natural macromolecules as well as a great variety of polymers synthesized in the Jast twenty years. Optical activity is a physical spectral property of chiral matter caused by asymmetrical configurations, conformations and structures which have no plane and no center of symmetry and consequently have two mirror image enantiomeric forms of inverse optical rotation. The racemic mixture of chiral enantiomers is optically inactive. The most common form of optical activity was first measured at a constant wavelength by the angle of rotation of linearly polarized light. More recently the measurements have been extended to the entire range of visible and attainable ultraviolet regions where electronic transitions are observed, giving rise to the ORD technique (Optical Rotatory Dispersion). The Cotton effects appear in the region of optically active absorption bands; outside of these bands the plain curve spectrum is also dependent on all the electronic transitions of the chromophores.




Optically Active Polymers


Book Description

This book presents a systematic study of the synthesis of optically active polymers, discussing in detail the syntheses of three different types of optically active polymers from helical polymers, dendronized polymers and other types of polymeric compounds. It also explains the syntheses of optically active azoaromatic and carbazole-containing azoaromatic polymers and copolymers; optically active benzodithiophene; and optically active porphyrin derivatives. The final chapter discusses different properties of optically active polymers such as nonlinear optical properties, chiroptical properties, vapochromic behaviour, absorption and emission properties, fabrication and photochromic properties. The intrinsic details of various properties of optically active polymers will offer a valuable resource for researchers and industry personnel actively engaged in application-oriented investigations.




Optically Active Polymers


Book Description



















Nonlinear Optical Effects in Organic Polymers


Book Description

Photonics, the counterpart of electronics, involves the usage of Photons instead of electrons to process information and perform various switching operations. Photonics is projected to be the technology of the future because of the gain in speed, processing and interconnectivity of network. Nonlinear optical processes will play the key role in photonics Where they can be used for frequency conversion, optical switching and modulation. Organic molecules and polymers have emerged as a new class of highly promising nonlinear optical materials Which has captured the attention of scientists world wide. The organic systems offer the advantage of large nonresonant nonlinearities derived from the 1T electrons contribution, femtosecond response time and the flexibility to modify their molecular structures. In addition, organic polymers can easily be fabricated in various device structures compatible with the fiber-optics communication system. The area of nonlinear optics of organic molecules and polymers offers exciting opportunities for both fundamental research and technologic development. It is truly an interdisciplinary area. This proceeding is the outcome of the first NATO Advanced Research WOrkshop in this highly important area. The objective of the workshop was to provide a forum for scientists of varying background from both universities and industries to come together and interface their expertize. The scope of the workshop was multidisciplinary with active participations from Chemists, physicists, engineers and materials scientists from many countries.




Conjugated Polymers


Book Description