Optics F2f


Book Description

This textbook on optics introduces key concepts of wave optics and light propagation. The book highlights topics in contemporary optics such as propagation, dispersion and apodisation. The principles are applied through worked examples, and the book is copiously illustrated with more than 240 figures and 200 end-of-chapter exercises.




Superresolution Optical Microscopy


Book Description

This book presents a comprehensive and coherent summary of techniques for enhancing the resolution and image contrast provided by far-field optical microscopes. It takes a critical look at the body of knowledge that comprises optical microscopy, compares and contrasts the various instruments, provides a clear discussion of the physical principles that underpin these techniques, and describes advances in science and medicine for which superresolution microscopes are required and are making major contributions. The text fills significant gaps that exist in other works on superresolution imaging, firstly by placing a new emphasis on the specimen, a critical component of the microscope setup, giving equal importance to the enhancement of both resolution and contrast. Secondly, it covers several topics not typically discussed in depth, such as Bessel and Airy beams, the physics of the spiral phase plate, vortex beams and singular optics, photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM), and light-sheet fluorescence microscopy (LSFM). Several variants of these techniques are critically discussed. Noise, optical aberrations, specimen damage, and artifacts in microscopy are also covered. The importance of validation of superresolution images with electron microscopy is stressed. Additionally, the book includes translations and discussion of seminal papers by Abbe and Helmholtz that proved to be pedagogically relevant as well as historically significant. This book is written for students, researchers, and engineers in the life sciences, medicine, biological engineering, and materials science who plan to work with or already are working with superresolution light microscopes. The volume can serve as a reference for these areas while a selected set of individual chapters can be used as a textbook for a one-semester undergraduate or first-year graduate course on superresolution microscopy. Moreover, the text provides a captivating account of curiosity, skepticism, risk-taking, innovation, and creativity in science and technology. Good scientific practice is emphasized throughout, and the author’s lecture slides on responsible conduct of research are included as an online resource which will be of interest to students, course instructors, and scientists alike.




Foundations of Nonlinear Optical Microscopy


Book Description

Foundations of Nonlinear Optical Microscopy Concise yet comprehensive resource presenting the foundations of nonlinear optical microscopy Foundations of Nonlinear Optical Microscopy brings together all relevant principles of nonlinear optical (NLO) microscopy, presenting NLO microscopy within a consistent framework to allow for the origin of the signals and the interrelation between different NLO techniques to be understood. The text provides rigorous yet practical derivations, which amount to expressions that can be directly related to measured values of resolution, sensitivity, and imaging contrast. The book also addresses typical questions students ask, and answers them with clear explanations and examples. Readers of this book will develop a solid physical understanding of NLO microscopy, appreciate the advantages and limitations of each technique, and recognize the exciting possibilities that lie ahead. Foundations of Nonlinear Optical Microscopy covers sample topics such as: Light propagation, focusing of light, pulses of light, classical description of light-matter interactions, and quantum mechanical description of light-matter interactions Molecular transitions, selection rules, signal radiation, and detection of light Multi-photon fluorescence and pump-probe microscopy Harmonic generation, sum-frequency generation, and coherent Raman scattering Senior undergraduate and graduate students in chemistry, physics, and biomedical engineering, along with students of electrical engineering and instructors in both of these fields, can use the information within Foundations of Nonlinear Optical Microscopy and the included learning resources to gain a concise yet comprehensive overview of the subject.







Power Beaming: History, Theory, And Practice


Book Description

Power beaming is the ability to move energy without moving or employing mass between an energy input and energy output. It is an emerging technology that could reshape how we generate and distribute energy and how our devices and autonomous systems are powered.This comprehensive compendium provides the foundation needed for researchers, technology developers, and end users to understand the promise and challenges for power beaming. By establishing a common nomenclature and conceptual approach to the analysis and assessment of power beaming systems, this unique reference text provides a true status of advancements in the field, and lays the groundwork for fruitful future research and applications.




Optics


Book Description










Optics Letters


Book Description