Optics of the Sea


Book Description




Marine Optics


Book Description

Marine Optics




Ocean Optics


Book Description

Since the publication of Jerlov's classic volume on optical oceanography in 1968, the ability to predict or model the submarine light field, given measurements of the inherent optical properties of the ocean, has improved to the point that model fields are very close to measured fields. In the last three decades, remote sensing capabilities have fostered powerful models that can be inverted to estimate the inherent optical properties closely related to substances important for understanding global biological productivity, environmental quality, and most nearshore geophysical processes. This volume presents an eclectic blend of information on the theories, experiments, and instrumentation that now characterize the ways in which optical oceanography is studied. Through the course of this interdisciplinary work, the reader is led from the physical concepts of radiative transfer to the experimental techniques used in the lab and at sea, to process-oriented discussions of the biochemical mechanisms responsible for oceanic optical variability. The text will be of interest to researchers and students in physical and biological oceanography, biology, geophysics, limnology, atmospheric optics, and remote sensing of ocean and global climate change.




Optical Remote Sensing of Ocean Hydrodynamics


Book Description

Optical Remote Sensing is one of the main technologies used in sea surface monitoring. Optical Remote Sensing of Ocean Hydrodynamics investigates and demonstrates capabilities of optical remote sensing technology for enhanced observations and detection of ocean environments. It provides extensive knowledge of physical principles and capabilities of optical observations of the oceans at high spatial resolution, 1-4m, and on the observations of surface wave hydrodynamic processes. It also describes the implementation of spectral-statistical and fusion algorithms for analyses of multispectral optical databases and establishes physics-based criteria for detection of complex wave phenomena and hydrodynamic disturbances including assessment and management of optical databases. This book explains the physical principles of high-resolution optical imagery of the ocean surface, discusses for the first time the capabilities of observing hydrodynamic processes and events, and emphasizes the integration of optical measurements and enhanced data analysis. It also covers both the assessment and the interpretation of dynamic multispectral optical databases and includes applications for advanced studies and nonacoustic detection. This book is an invaluable resource for researches, industry professionals, engineers, and students working on cross-disciplinary problems in ocean hydrodynamics, optical remote sensing of the ocean and sea surface remote sensing. Readers in the fields of geosciences and remote sensing, applied physics, oceanography, satellite observation technology, and optical engineering will learn the theory and practice of optical interactions with the ocean.




Optical Oceanography


Book Description

Optical Oceanography




YOUMARES 8 – Oceans Across Boundaries: Learning from each other


Book Description

This open access book presents the proceedings volume of the YOUMARES 8 conference, which took place in Kiel, Germany, in September 2017, supported by the German Association for Marine Sciences (DGM). The YOUMARES conference series is entirely bottom-up organized by and for YOUng MARine RESearchers. Qualified early career scientists moderated the scientific sessions during the conference and provided literature reviews on aspects of their research field. These reviews and the presenters’ conference abstracts are compiled here. Thus, this book discusses highly topical fields of marine research and aims to act as a source of knowledge and inspiration for further reading and research.




Principles of Ocean Physics


Book Description

In recent years, significant advances in both the theoretical and observational sides of physical oceanography have allowed the ocean's physical behavior to be described more quantitatively. This book discusses the physical mechanisms and processes of the sea, and will be valuable not only to oceanographers but also physicists, graduate students, and scientists working in dynamics or optics of the marine environment.




Multiple Light Scattering


Book Description

Multiple Light Scattering: Tables, Formulas, and Applications, Volume 1 serves to give concise and handy information related to multiple scattering theory in such a way that the reader would not have to rely on extensive literature on the subject. The book is divided into two parts. Part I: General Theory covers the basic concepts, terms, and notations related to multiple scattering theory; exponential integrals and related functions; reciprocity and detailed balance; different related methods; and homogenous atmospheres with arbitrary phase function and single-scattering albedo. Part II: Isotropic Scattering discusses related concepts such as solutions using the Milne operator; semi-infinite atmospheres; the H-functions; and finite slabs. The text is recommended for practitioners in optics, atmospheric physics, astronomy, and other fields that need a reference book in the subject of multiple light scattering.




Marine Physics


Book Description

Marine Physics guides different disciplines regarding the study of the sea and provides basic understanding of the fundamental theories and premises of the other disciplines. This book is comprised of eight chapters, beginning with some concepts regarding movement of the sea, such as the density currents, diffusion processes, and wind currents in deep water. These occurrences in the sea are thoroughly discussed and explained through theories and concepts behind them. The next three chapters deal more closely on the broad topic of oceanography. Some of the topics include qualitative physical characteristics, waves in both deep and shallow water, and the tides. The last two chapters discuss optics and acoustics as they are applied in the study of marine science. This book aims to be of use to students in various disciplines involved in not just marine science, but also in engineering, biology, and physics.




Visual Ecology


Book Description

A comprehensive treatment of visual ecology Visual ecology is the study of how animals use visual systems to meet their ecological needs, how these systems have evolved, and how they are specialized for particular visual tasks. Visual Ecology provides the first up-to-date synthesis of the field to appear in more than three decades. Featuring some 225 illustrations, including more than 140 in color, spread throughout the text, this comprehensive and accessible book begins by discussing the basic properties of light and the optical environment. It then looks at how photoreceptors intercept light and convert it to usable biological signals, how the pigments and cells of vision vary among animals, and how the properties of these components affect a given receptor's sensitivity to light. The book goes on to examine how eyes and photoreceptors become specialized for an array of visual tasks, such as navigation, evading prey, mate choice, and communication. A timely and much-needed resource for students and researchers alike, Visual Ecology also includes a glossary and a wealth of examples drawn from the full diversity of visual systems. The most up-to-date overview of visual ecology available Features some 225 illustrations, including more than 140 in color, spread throughout the text Guides readers from the basic physics of light to the role of visual systems in animal behavior Includes a glossary and a wealth of real-world examples