Optimal and Robust Scheduling for Networked Control Systems


Book Description

Optimal and Robust Scheduling for Networked Control Systems tackles the problem of integrating system components—controllers, sensors, and actuators—in a networked control system. It is common practice in industry to solve such problems heuristically, because the few theoretical results available are not comprehensive and cannot be readily applied by practitioners. This book offers a solution to the deterministic scheduling problem that is based on rigorous control theoretical tools but also addresses practical implementation issues. Helping to bridge the gap between control theory and computer science, it suggests that the consideration of communication constraints at the design stage will significantly improve the performance of the control system. Technical Results, Design Techniques, and Practical Applications The book brings together well-known measures for robust performance as well as fast stochastic algorithms to assist designers in selecting the best network configuration and guaranteeing the speed of offline optimization. The authors propose a unifying framework for modelling NCSs with time-triggered communication and present technical results. They also introduce design techniques, including for the codesign of a controller and communication sequence and for the robust design of a communication sequence for a given controller. Case studies explore the use of the FlexRay TDMA and time-triggered control area network (CAN) protocols in an automotive control system. Practical Solutions to Your Time-Triggered Communication Problems This unique book develops ready-to-use engineering tools for large-scale control system integration with a focus on robustness and performance. It emphasizes techniques that are directly applicable to time-triggered communication problems in the automotive industry and in avionics, robotics, and automated manufacturing.







Optimal and Robust Scheduling for Networked Control Systems


Book Description

Optimal and Robust Scheduling for Networked Control Systems tackles the problem of integrating system components—controllers, sensors, and actuators—in a networked control system. It is common practice in industry to solve such problems heuristically, because the few theoretical results available are not comprehensive and cannot be readily applied by practitioners. This book offers a solution to the deterministic scheduling problem that is based on rigorous control theoretical tools but also addresses practical implementation issues. Helping to bridge the gap between control theory and computer science, it suggests that the consideration of communication constraints at the design stage will significantly improve the performance of the control system. Technical Results, Design Techniques, and Practical Applications The book brings together well-known measures for robust performance as well as fast stochastic algorithms to assist designers in selecting the best network configuration and guaranteeing the speed of offline optimization. The authors propose a unifying framework for modelling NCSs with time-triggered communication and present technical results. They also introduce design techniques, including for the codesign of a controller and communication sequence and for the robust design of a communication sequence for a given controller. Case studies explore the use of the FlexRay TDMA and time-triggered control area network (CAN) protocols in an automotive control system. Practical Solutions to Your Time-Triggered Communication Problems This unique book develops ready-to-use engineering tools for large-scale control system integration with a focus on robustness and performance. It emphasizes techniques that are directly applicable to time-triggered communication problems in the automotive industry and in avionics, robotics, and automated manufacturing.




Linear Control System Analysis and Design with MATLAB


Book Description

This book uses numerous in-depth explanations, diagrams, calculations, and tables to provide an intensive overview of modern control theory and control system design. Mathematics is kept to a minimum, and engineering applications are stressed throughout. Completely updated and packed with student-friendly features, the sixth edition presents a range of updated examples using MATLAB, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Over 75 percent of the problems presented in the previous edition have been revised or replaced.




Tensor Product Model Transformation in Polytopic Model-Based Control


Book Description

Tensor Product Model Transformation in Polytopic Model-Based Control offers a new perspective of control system design. Instead of relying solely on the formulation of more effective LMIs, which is the widely adopted approach in existing LMI-related studies, this cutting-edge book calls for a systematic modification and reshaping of the polytopic convex hull to achieve enhanced performance. Varying the convexity of the resulting TP canonical form is a key new feature of the approach. The book concentrates on reducing analytical derivations in the design process, echoing the recent paradigm shift on the acceptance of numerical solution as a valid form of output to control system problems. The salient features of the book include: Presents a new HOSVD-based canonical representation for (qLPV) models that enables trade-offs between approximation accuracy and computation complexity Supports a conceptually new control design methodology by proposing TP model transformation that offers a straightforward way of manipulating different types of convexity to appear in polytopic representation Introduces a numerical transformation that has the advantage of readily accommodating models described by non-conventional modeling and identification approaches, such as neural networks and fuzzy rules Presents a number of practical examples to demonstrate the application of the approach to generate control system design for complex (qLPV) systems and multiple control objectives. The authors’ approach is based on an extended version of singular value decomposition applicable to hyperdimensional tensors. Under the approach, trade-offs between approximation accuracy and computation complexity can be performed through the singular values to be retained in the process. The use of LMIs enables the incorporation of multiple performance objectives into the control design problem and assurance of a solution via convex optimization if feasible. Tensor Product Model Transformation in Polytopic Model-Based Control includes examples and incorporates MATLAB® Toolbox TPtool. It provides a reference guide for graduate students, researchers, engineers, and practitioners who are dealing with nonlinear systems control applications.




Classical Feedback Control with Nonlinear Multi-Loop Systems


Book Description

Classical Feedback Control with Nonlinear Multi-Loop Systems describes the design of high-performance feedback control systems, emphasizing the frequency-domain approach widely used in practical engineering. It presents design methods for high-order nonlinear single- and multi-loop controllers with efficient analog and digital implementations. Bode integrals are employed to estimate the available system performance and to determine the ideal frequency responses that maximize the disturbance rejection and feedback bandwidth. Nonlinear dynamic compensators provide global stability and improve transient responses. This book serves as a unique text for an advanced course in control system engineering, and as a valuable reference for practicing engineers competing in today’s industrial environment.




Multi-Agent Systems


Book Description

Multi-Agent Systems: Platoon Control and Non-Fragile Quantized Consensus aims to present recent research results in designing platoon control and non-fragile quantized consensus for multi-agent systems. The main feature of this book is that distributed adaptive sliding mode control (SMC) algorithms are proposed to guarantee strong string stability based on modified constant time headway (MCTH) policy. The MCTH policy is used to remove the unrealistic assumption in the most existing literature that initial spacing, velocity and acceleration errors are zero. This monograph investigates the platoon control issue by combining SMC technique with neural network and fuzzy logic system approximation methods.




Nonlinear Pinning Control of Complex Dynamical Networks


Book Description

This book presents two nonlinear control strategies for complex dynamical networks. First, sliding-mode control is used, and then the inverse optimal control approach is employed. For both cases, model-based is considered in Chapter 3 and Chapter 5; then, Chapter 4 and Chapter 6 are based on determining a model for the unknow system using a recurrent neural network, using on-line extended Kalman filtering for learning. The book is organized in four sections. The first one covers mathematical preliminaries, with a brief review for complex networks, and the pinning methodology. Additionally, sliding-mode control and inverse optimal control are introduced. Neural network structures are also discussed along with a description of the high-order ones. The second section presents the analysis and simulation results for sliding-mode control for identical as well as non-identical nodes. The third section describes analysis and simulation results for inverse optimal control considering identical or non-identical nodes. Finally, the last section presents applications of these schemes, using gene regulatory networks and microgrids as examples.




Anti-Disturbance Control for Systems with Multiple Disturbances


Book Description

The main focus of this monograph will be on the Enhanced Anti-Disturbance Control and filtering theory and their applications. In fact, the classical anti-disturbance control theory only considered one "equivalent" disturbance which is merged by different unknown sources. However, it is noted that along with the development of information obtaining and processing technologies, one can get more information or knowledge about various types of disturbances.




Cooperative Control of Multi-Agent Systems


Book Description

Distributed controller design is generally a challenging task, especially for multi-agent systems with complex dynamics, due to the interconnected effect of the agent dynamics, the interaction graph among agents, and the cooperative control laws. Cooperative Control of Multi-Agent Systems: A Consensus Region Approach offers a systematic framework for designing distributed controllers for multi-agent systems with general linear agent dynamics, linear agent dynamics with uncertainties, and Lipschitz nonlinear agent dynamics. Beginning with an introduction to cooperative control and graph theory, this monograph: Explores the consensus control problem for continuous-time and discrete-time linear multi-agent systems Studies the H∞ and H2 consensus problems for linear multi-agent systems subject to external disturbances Designs distributed adaptive consensus protocols for continuous-time linear multi-agent systems Considers the distributed tracking control problem for linear multi-agent systems with a leader of nonzero control input Examines the distributed containment control problem for the case with multiple leaders Covers the robust cooperative control problem for multi-agent systems with linear nominal agent dynamics subject to heterogeneous matching uncertainties Discusses the global consensus problem for Lipschitz nonlinear multi-agent systems Cooperative Control of Multi-Agent Systems: A Consensus Region Approach provides a novel approach to designing distributed cooperative protocols for multi-agent systems with complex dynamics. The proposed consensus region decouples the design of the feedback gain matrices of the cooperative protocols from the communication graph and serves as a measure for the robustness of the protocols to variations of the communication graph. By exploiting the decoupling feature, adaptive cooperative protocols are presented that can be designed and implemented in a fully distributed fashion.