Optimal Control of Mechanical Oscillations


Book Description

This book explores two important aspects of the optimal control of oscillatory systems: the initiation of optimal oscillatory regimes and control possibilities for random disturbances. The main content of the book is based upon assertions of the optimal control theory and the disturbance theory. All theoretical propositions are illustrated by examples with exact mechanical context. An appendix covers the necessary mathematical prerequisites.




Nonlinear Oscillations in Mechanical Engineering


Book Description

"Nonlinear Oscillations in Mechanical Engineering" explores the effects of nonlinearities encountered in applications in that field. Since the nonlinearities are caused, first of all, by contacts between different mechanical parts, the main part of this book is devoted to oscillations in mechanical systems with discontinuities caused by dry friction and collisions. Another important source of nonlinearity which is covered is that caused by rotating unbalanced parts common in various machines as well as variable inertias occurring in all kinds of crank mechanisms. This book is written for advanced undergraduate and postgraduate students, but it may be also helpful and interesting for both theoreticians and practitioners working in the area of mechanical engineering at universities, in research labs or institutes and especially in the R and D departments within industrial firms.




Problems and Methods of Optimal Control


Book Description

The numerous applications of optimal control theory have given an incentive to the development of approximate techniques aimed at the construction of control laws and the optimization of dynamical systems. These constructive approaches rely on small parameter methods (averaging, regular and singular perturbations), which are well-known and have been proven to be efficient in nonlinear mechanics and optimal control theory (maximum principle, variational calculus and dynamic programming). An essential feature of the procedures for solving optimal control problems consists in the necessity for dealing with two-point boundary-value problems for nonlinear and, as a rule, nonsmooth multi-dimensional sets of differential equations. This circumstance complicates direct applications of the above-mentioned perturbation methods which have been developed mostly for investigating initial-value (Cauchy) problems. There is now a need for a systematic presentation of constructive analytical per turbation methods relevant to optimal control problems for nonlinear systems. The purpose of this book is to meet this need in the English language scientific literature and to present consistently small parameter techniques relating to the constructive investigation of some classes of optimal control problems which often arise in prac tice. This book is based on a revised and modified version of the monograph: L. D. Akulenko "Asymptotic methods in optimal control". Moscow: Nauka, 366 p. (in Russian).




Controllability of Dynamic Systems


Book Description

The book is about the possibilities of involvement of the well-known Green’s function method in exact or approximate controllability analysis for dynamic systems. Due to existing extensions of the Green’s function notion to nonlinear systems, the approach developed here is valid for systems with both linear and nonlinear dynamics. The book offers a number of particular examples, covering specific issues that make the controllability analysis sophisticated, such as coordinate dependent characteristics, point sources, unbounded domains, higher dimensions, and specific nonlinearities. It also offers extensive numerical analysis, which reveals both advantages and drawbacks of the approach. As such, the book will be of interest to researchers interested in the theory and practice of control, as well as PhD and Master’s students.




Optimal Control of Wind Energy Systems


Book Description

Covering all aspects of this important topic, this work presents a review of the main control issues in wind power generation, offering a unified picture of the issues surrounding its optimal control. Discussion is focused on a global dynamic optimization approach to wind power systems using a set of optimization criteria which comply with a comprehensive group of requirements including: energy conversion efficiency; mechanical reliability; and quality of the energy provided.




Dynamics of Mechanical Systems with Coulomb Friction


Book Description

This book addresses the general theory of motion of mechanical systems with Coulomb friction. In particular, the book focuses on the following specific problems: derivation of the equations of motion, Painleve's paradoxes, tangential impact and dynamic seizure, and frictional self-excited oscillations. In addition to the theoretical results, the book contains a detailed description of experiments that show that, in general, the friction force at the instant of transition to motion is determined by the rate of tangential load and does not depend on the duration of the previous contact. These results are used to develop the theory of frictional self-excited oscillations. A number of industrially relevant mechanisms are considered, including the Painleve-Klein scheme, epicyclic mechanisms, crank mechanisms, gear transmission, the link mechanism of a planing machine, and the slider of metal-cutting machine tools. The book is intended for researchers, engineers and students in mechanical engineering.




Handbook of Research on Advanced Intelligent Control Engineering and Automation


Book Description

In industrial engineering and manufacturing, control of individual processes and systems is crucial to developing a quality final product. Rapid developments in technology are pioneering new techniques of research in control and automation with multi-disciplinary applications in electrical, electronic, chemical, mechanical, aerospace, and instrumentation engineering. The Handbook of Research on Advanced Intelligent Control Engineering and Automation presents the latest research into intelligent control technologies with the goal of advancing knowledge and applications in various domains. This text will serve as a reference book for scientists, engineers, and researchers, as it features many applications of new computational and mathematical tools for solving complicated problems of mathematical modeling, simulation, and control.




Control Theory in Physics and Other Fields of Science


Book Description

This book covers systematically and in a simple language the mathematical and physical foundations of controlling deterministic and stochastic evolutionary processes in systems with a high degree of complexity. Strong emphasis is placed on concepts, methods and techniques for modelling, assessment and the solution or estimation of control problems in an attempt to understand the large variability of these problems in several branches of physics, chemistry and biology as well as in technology and economics. The main focus of the book is on a clear physical and mathematical understanding of the dynamics and kinetics behind several kinds of control problems and their relation to self-organizing principles in complex systems. The book is a modern introduction and a helpful tool for researchers, engineers as well as post-docs and graduate students interested in an application oriented control theory and related topics.




Vibration of Strongly Nonlinear Discontinuous Systems


Book Description

This monograph addresses the systematic representation of the methods of analysis developed by the authors as applied to such systems. Particular features of dynamic processes in such systems are studied. Special attention is given to an analysis of different resonant phenomena taking unusual and diverse forms.




Statistical Dynamics and Reliability Theory for Mechanical Structures


Book Description

The monograph text is based on lectures delivered by author during many years for students of Applied Iechanics Department of Bauman Ioscow State Technical University. The monograph includes also analitical results of scientific research obtained in collaboration with industry. Progress in developing new equipment has called for a better understand ing of the physical peculiarities pertaining to the action of designed structures in real conditions. This is necessary for increasing the accuracy of the analysis and making these structures more reliable. It has been found that classical determined perturbations are not principal and that determinism-based methods of classical mechanics prove insufficient for understanding and explaining physical effects that arise at the operation of instruments located on moving objects, the vibration of rocket engines, the motion of a vehicle, and the action of wind and seismic loads. Therefore the necessity arose for devising a new physical model to analyze these dynamic processes and, in particular, for creating a new mathematical apparatus that would allow us to take into account non-deterministic external excitations. The theory of random processes that had been developed well enough as applied to problems of radio engineering and automatic control, where the effect produced by random excitations appeared to be commensurable with that of deterministic excitations and where the ignoring of the random ex citations would bring about incorrect results, became such an apparatus.