Decision Making Under Uncertainty


Book Description

An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.




Irreversible Decisions under Uncertainty


Book Description

Here, two highly experienced authors present an alternative approach to optimal stopping problems. The basic ideas and techniques of the approach can be explained much simpler than the standard methods in the literature on optimal stopping problems. The monograph will teach the reader to apply the technique to many problems in economics and finance, including new ones. From the technical point of view, the method can be characterized as option pricing via the Wiener-Hopf factorization.




Bounded Rationality in Decision Making Under Uncertainty: Towards Optimal Granularity


Book Description

This book addresses an intriguing question: are our decisions rational? It explains seemingly irrational human decision-making behavior by taking into account our limited ability to process information. It also shows with several examples that optimization under granularity restriction leads to observed human decision-making. Drawing on the Nobel-prize-winning studies by Kahneman and Tversky, researchers have found many examples of seemingly irrational decisions: e.g., we overestimate the probability of rare events. Our explanation is that since human abilities to process information are limited, we operate not with the exact values of relevant quantities, but with “granules” that contain these values. We show that optimization under such granularity indeed leads to observed human behavior. In particular, for the first time, we explain the mysterious empirical dependence of betting odds on actual probabilities. This book can be recommended to all students interested in human decision-making, to researchers whose work involves human decisions, and to practitioners who design and employ systems involving human decision-making —so that they can better utilize our ability to make decisions under uncertainty.




Optimal Decisions Under Uncertainty


Book Description

Understanding the stochastic enviornment is as much important to the manager as to the economist. From production and marketing to financial management, a manager has to assess various costs imposed by uncertainty. The economist analyzes the role of incomplete and too often imperfect information structures on the optimal decisions made by a firm. The need for understanding the role of uncertainty in quantitative decision models, both in economics and management science provide the basic motivation of this monograph. The stochastic environment is analyzed here in terms of the following specific models of optimization: linear and quadratic models, linear programming, control theory and dynamic programming. Uncertainty is introduced here through the para meters, the constraints, and the objective function and its impact evaluated. Specifically recent developments in applied research are emphasized, so that they can help the decision-maker arrive at a solution which has some desirable charac teristics like robustness, stability and cautiousness. Mathematical treatment is kept at a fairly elementary level and applied as pects are emphasized much more than theory. Moreover, an attempt is made to in corporate the economic theory of uncertainty into the stochastic theory of opera tions research. Methods of optimal decision rules illustrated he re are applicable in three broad areas: (a) applied economic models in resource allocation and economic planning, (b) operations research models involving portfolio analysis and stochastic linear programming and (c) systems science models in stochastic control and adaptive behavior.




Decisions Under Uncertainty


Book Description

Publisher Description




Decision Making Under Uncertainty in Electricity Markets


Book Description

Decision Making Under Uncertainty in Electricity Markets provides models and procedures to be used by electricity market agents to make informed decisions under uncertainty. These procedures rely on well established stochastic programming models, which make them efficient and robust. Particularly, these techniques allow electricity producers to derive offering strategies for the pool and contracting decisions in the futures market. Retailers use these techniques to derive selling prices to clients and energy procurement strategies through the pool, the futures market and bilateral contracting. Using the proposed models, consumers can derive the best energy procurement strategies using the available trading floors. The market operator can use the techniques proposed in this book to clear simultaneously energy and reserve markets promoting efficiency and equity. The techniques described in this book are of interest for professionals working on energy markets, and for graduate students in power engineering, applied mathematics, applied economics, and operations research.




Uncertain Optimal Control


Book Description

This book introduces the theory and applications of uncertain optimal control, and establishes two types of models including expected value uncertain optimal control and optimistic value uncertain optimal control. These models, which have continuous-time forms and discrete-time forms, make use of dynamic programming. The uncertain optimal control theory relates to equations of optimality, uncertain bang-bang optimal control, optimal control with switched uncertain system, and optimal control for uncertain system with time-delay. Uncertain optimal control has applications in portfolio selection, engineering, and games. The book is a useful resource for researchers, engineers, and students in the fields of mathematics, cybernetics, operations research, industrial engineering, artificial intelligence, economics, and management science.




Investment under Uncertainty


Book Description

How should firms decide whether and when to invest in new capital equipment, additions to their workforce, or the development of new products? Why have traditional economic models of investment failed to explain the behavior of investment spending in the United States and other countries? In this book, Avinash Dixit and Robert Pindyck provide the first detailed exposition of a new theoretical approach to the capital investment decisions of firms, stressing the irreversibility of most investment decisions, and the ongoing uncertainty of the economic environment in which these decisions are made. In so doing, they answer important questions about investment decisions and the behavior of investment spending. This new approach to investment recognizes the option value of waiting for better (but never complete) information. It exploits an analogy with the theory of options in financial markets, which permits a much richer dynamic framework than was possible with the traditional theory of investment. The authors present the new theory in a clear and systematic way, and consolidate, synthesize, and extend the various strands of research that have come out of the theory. Their book shows the importance of the theory for understanding investment behavior of firms; develops the implications of this theory for industry dynamics and for government policy concerning investment; and shows how the theory can be applied to specific industries and to a wide variety of business problems.




Patient Care Under Uncertainty


Book Description

For the past few years, the author, a renowned economist, has been applying the statistical tools of economics to decision making under uncertainty in the context of patient health status and response to treatment. He shows how statistical imprecision and identification problems affect empirical research in the patient-care sphere.




Risk, Choice, and Uncertainty


Book Description

At its core, economics is about making decisions. In the history of economic thought, great intellectual prowess has been exerted toward devising exquisite theories of optimal decision making in situations of constraint, risk, and scarcity. Yet not all of our choices are purely logical, and so there is a longstanding tension between those emphasizing the rational and irrational sides of human behavior. One strand develops formal models of rational utility maximizing while the other draws on what behavioral science has shown about our tendency to act irrationally. In Risk, Choice, and Uncertainty, George G. Szpiro offers a new narrative of the three-century history of the study of decision making, tracing how crucial ideas have evolved and telling the stories of the thinkers who shaped the field. Szpiro examines economics from the early days of theories spun from anecdotal evidence to the rise of a discipline built around elegant mathematics through the past half century’s interest in describing how people actually behave. Considering the work of Locke, Bentham, Jevons, Walras, Friedman, Tversky and Kahneman, Thaler, and a range of other thinkers, he sheds light on the vast scope of discovery since Bernoulli first proposed a solution to the St. Petersburg Paradox. Presenting fundamental mathematical theories in easy-to-understand language, Risk, Choice, and Uncertainty is a revelatory history for readers seeking to grasp the grand sweep of economic thought.