Optimisation of Massively Parallel Neural Networks


Book Description

Book Description: Most current artificial neural networks exist only within software simulators running on conventional computers. Simulators can provide great flexibility, but require immensely powerful and costly hardware for even very small networks. An artificial neural network implemented as a custom integrated circuit could operate many thousands of times faster than any simulator as each neuron can operate simultaneously. A significant problem with implementing neural networks in hardware is that larger networks require a great deal of silicon area, making them too costly to design and produce. In this book, I test the effectiveness of a number of algorithms that reduce the size of a trained neural network while maintaining accuracy. Author Biography: Michael Oldroyd is a software development veteran who started progamming professionally back in 1992. He is now development manager at AES Data Systems. He has worked as a consultant and software developer for a number of international organisations including Mobil Oil, The European Commission, Deutsche Bank, Compaq Computer, and the Cabinet Office. He has developed several bespoke AI trading and decision support tools used on trading floors in the currency, stock and energy markets. He is a professional member of the IEEE and the Computational Intelligence Society.




Recent Advances in Optimal Structural Design


Book Description

Sponsored by the Technical Committee on Structural Design of the Technical Administrative Committee on Analysis and Computation of the Technical Activities Division of the Structural Engineering Institute of ASCE. This report documents the dramatic new developments in the field of structural optimization over the last two decades. Changes in both computational techniques and applications can be seen by developments in computational methods and solution algorithms, the role of optimization during the various stages of structural design, and the stochastic nature of design in relation to structural optimization. Topics include: Ømethods for discrete variable structural optimization; Ødecomposition methods in structural optimization; Østate of the art on the use of genetic algorithms in design of steel structures; Øconceptual design optimization of engineering structures; Øtopology and geometry optimization of trusses and frames; Øevolutionary structural optimization; Ødesign and optimization of semi-rigid framed structures; Øoptimized performance-based design for buildings; Ømulti-objective optimum design of seismic-resistant structures; and Øreliability- and cost-oriented optimal bridge maintenance planning. The book concludes with an extensive bibliography of journal papers on structural optimization published between 1987 and 1999.




Programming Massively Parallel Processors


Book Description

Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing




Neural Computing For Optimization And Combinatorics


Book Description

Since Hopfield proposed neural network computing for optimization and combinatorics problems, many neural network investigators have been working on optimization problems. In this book a variety of optimization problems and combinatorics problems are presented by respective experts.A very useful reference book for those who want to solve real-world applications, this book contains applications in graph theory, mathematics, stochastic computing including the multiple relaxation, associative memory and control, resource allocation problems, system identification and dynamic control, and job-stop scheduling.




Machine Learning, Optimization, and Data Science


Book Description

This two-volume set, LNCS 12565 and 12566, constitutes the refereed proceedings of the 6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020, held in Siena, Italy, in July 2020. The total of 116 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 209 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.







Applications of Neural Networks in Electromagnetics


Book Description

The high-speed capabilities and learning abilities of neural networks can be applied to quickly solving numerous complex optimization problems in electromagnetics, and this book shows you how. Even if you have no background in neural networks, this book helps you understand the basics of each main network architecture in use today, including its strengths and limitations. Moreover, it gives you the knowledge you need to identify situations when the use of neural networks is the best problem-solving option.




Industrial Applications of Neural Networks


Book Description

Neural network technology encompasses a class of methods which attempt to mimic the basic structures used in the brain for information processing. Thetechnology is aimed at problems such as pattern recognition which are difficult for traditional computational methods. Neural networks have potential applications in many industrial areas such as advanced robotics, operations research, and process engineering. This book is concerned with the application of neural network technology to real industrial problems. It summarizes a three-year collaborative international project called ANNIE (Applications of Neural Networks for Industry in Europe) which was jointly funded by industry and the European Commission within the ESPRIT programme. As a record of a working project, the book gives an insight into the real problems faced in taking a new technology from the workbench into a live industrial application, and shows just how it can be achieved. It stresses the comparison between neural networks and conventional approaches. Even the non-specialist reader will benefit from understanding the limitations as well as the advantages of the new technology.




Encyclopedia of Optimization


Book Description

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".




Handbook of Research on the IoT, Cloud Computing, and Wireless Network Optimization


Book Description

ICT technologies have contributed to the advances in wireless systems, which provide seamless connectivity for worldwide communication. The growth of interconnected devices and the need to store, manage, and process the data from them has led to increased research on the intersection of the internet of things and cloud computing. The Handbook of Research on the IoT, Cloud Computing, and Wireless Network Optimization is a pivotal reference source that provides the latest research findings and solutions for the design and augmentation of wireless systems and cloud computing. The content within this publication examines data mining, machine learning, and software engineering, and is designed for IT specialists, software engineers, researchers, academicians, industry professionals, and students.