Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets


Book Description

The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.




Bond Portfolio Optimization


Book Description

The book analyzes how modern portfolio theory and dynamic term structure models can be applied to government bond portfolio optimization problems. The author studies the necessary adjustments, examines the models with regard to the plausibility of their results and compares the outcomes to portfolio selection techniques used by practitioners. Both single-period and continuous-time bond portfolio optimization problems are considered.







BlackRock's Guide to Fixed-Income Risk Management


Book Description

An irreplaceable roadmap to modern risk management from renowned experts on the subject Edited by a co-founder and the former Chief Risk Officer of BlackRock—the world’s largest asset manager—BlackRock’s Guide to Fixed-Income Risk Management delivers an insightful blueprint to the implementation of a comprehensive investment risk management framework for buy-side firms. Leveraging the unprecedented academic and professional experience of current and former senior leaders in BlackRock’s risk and portfolio management functions, as well as trading, financial modeling, and analytics experts, the book serves a practitioner’s guide to investment risk management, leveraging BlackRock’s risk management framework. The included chapters combine to provide chief investment officers, risk managers, portfolio managers, researchers, and compliance professionals an approach to investment risk management well-suited for today's and tomorrow's markets. The book also presents: Critical elements that underpin a strong risk management program and culture Fixed income risk management concepts and theories that can be applied to other asset classes Lessons learned from financial crises and the COVID-19 Pandemic Ideal for undergraduate students and students and scholars of business, finance, and risk management, BlackRock’s Guide to Fixed-Income Risk Management is a one-of-a-kind combination of modern theory with proven, practical risk management strategies.




Quantitative Management of Bond Portfolios


Book Description

The practice of institutional bond portfolio management has changed markedly since the late 1980s in response to new financial instruments, investment methodologies, and improved analytics. Investors are looking for a more disciplined, quantitative approach to asset management. Here, five top authorities from a leading Wall Street firm provide practical solutions and feasible methodologies based on investor inquiries. While taking a quantitative approach, they avoid complex mathematical derivations, making the book accessible to a wide audience, including portfolio managers, plan sponsors, research analysts, risk managers, academics, students, and anyone interested in bond portfolio management. The book covers a range of subjects of concern to fixed-income portfolio managers--investment style, benchmark replication and customization, managing credit and mortgage portfolios, managing central bank reserves, risk optimization, and performance attribution. The first part contains empirical studies of security selection versus asset allocation, index replication with derivatives and bonds, optimal portfolio diversification, and long-horizon performance of assets. The second part covers portfolio management tools for risk budgeting, bottom-up risk modeling, performance attribution, innovative measures of risk sensitivities, and hedging risk exposures. A first-of-its-kind publication from a team of practitioners at the front lines of financial thinking, this book presents a winning combination of mathematical models, intuitive examples, and clear language.




Bond Portfolio Investing and Risk Management


Book Description

Learn the fine art of risk measurement and control—from a senior member of PIMCO! Bond Portfolio Investing and Risk Management is designed for one purpose—to help you do the most important part of your job. A top player in the upper echelon of PIMCO, Vineer Bhansali understands the nuances and complexities of managing risk in fixed-income investing better than anyone. In this highly practical guide, he puts his years of experience and the latest research to work in order to help you contend with such issues as: Liquidity and stress risks Asset allocation Market anomalies Cross-market relationships Tail-risk measurement Cyclical returns Macroeconomic data Bond Portfolio Investing and Risk Management details the tools used to offset risk, including their advantages and drawbacks, and explains when to use each one. Bhansali provides practical investment techniques to give you a firm handle on the value and risk of a fixed-income instrument.




A Primer on Managing Sovereign Debt-Portfolio Risks


Book Description

This paper provides an overview of sovereign debt portfolio risks and discusses various liability management operations (LMOs) and instruments used by public debt managers to mitigate these risks. Debt management strategies analyzed in the context of helping reach debt portfolio targets and attain desired portfolio structures. Also, the paper outlines how LMOs could be integrated into a debt management strategy and serve as policy tools to reduce potential debt portfolio vulnerabilities. Further, the paper presents operational issues faced by debt managers, including the need to develop a risk management framework, interactions of debt management with fiscal policy, monetary policy, and financial stability, as well as efficient government bond markets.




Advanced Bond Portfolio Management


Book Description

In order to effectively employ portfolio strategies that can control interest rate risk and/or enhance returns, you must understand the forces that drive bond markets, as well as the valuation and risk management practices of these complex securities. In Advanced Bond Portfolio Management, Frank Fabozzi, Lionel Martellini, and Philippe Priaulet have brought together more than thirty experienced bond market professionals to help you do just that. Divided into six comprehensive parts, Advanced Bond Portfolio Management will guide you through the state-of-the-art techniques used in the analysis of bonds and bond portfolio management. Topics covered include: General background information on fixed-income markets and bond portfolio strategies The design of a strategy benchmark Various aspects of fixed-income modeling that will provide key ingredients in the implementation of an efficient portfolio and risk management process Interest rate risk and credit risk management Risk factors involved in the management of an international bond portfolio Filled with in-depth insight and expert advice, Advanced Bond Portfolio Management is a valuable resource for anyone involved or interested in this important industry.




Revisiting Risk-Weighted Assets


Book Description

In this paper, we provide an overview of the concerns surrounding the variations in the calculation of risk-weighted assets (RWAs) across banks and jurisdictions and how this might undermine the Basel III capital adequacy framework. We discuss the key drivers behind the differences in these calculations, drawing upon a sample of systemically important banks from Europe, North America, and Asia Pacific. We then discuss a range of policy options that could be explored to fix the actual and perceived problems with RWAs, and improve the use of risk-sensitive capital ratios.




Stochastic Optimization Methods in Finance and Energy


Book Description

This volume presents a collection of contributions dedicated to applied problems in the financial and energy sectors that have been formulated and solved in a stochastic optimization framework. The invited authors represent a group of scientists and practitioners, who cooperated in recent years to facilitate the growing penetration of stochastic programming techniques in real-world applications, inducing a significant advance over a large spectrum of complex decision problems. After the recent widespread liberalization of the energy sector in Europe and the unprecedented growth of energy prices in international commodity markets, we have witnessed a significant convergence of strategic decision problems in the energy and financial sectors. This has often resulted in common open issues and has induced a remarkable effort by the industrial and scientific communities to facilitate the adoption of advanced analytical and decision tools. The main concerns of the financial community over the last decade have suddenly penetrated the energy sector inducing a remarkable scientific and practical effort to address previously unforeseeable management problems. Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Markets Strategies aims to include in a unified framework for the first time an extensive set of contributions related to real-world applied problems in finance and energy, leading to a common methodological approach and in many cases having similar underlying economic and financial implications. Part 1 of the book presents 6 chapters related to financial applications; Part 2 presents 7 chapters on energy applications; and Part 3 presents 5 chapters devoted to specific theoretical and computational issues.




Recent Books