Organic Memory


Book Description

How does the past live in us? Do we inherit our ancestors' memories as we do their physical characteristics? In the nineteenth century, mainstream science embraced a long-standing superstition: the belief that memory could be inherited. Scientists reasoned that, just as bodies were reproduced from generation to generation, so were thoughts, memories, and cultural achievements. Heredity and identity were no mere family matter, but the basis of nations. The glories and sins of the past were not gone: they remained in the tissues of living people, who could be honored or blamed accordingly. Organic Memory surveys the literary and scientific history of an idea that will not go away. Focusing on the years between 1870 and 1918, Otis explores both the origins and the consequences of the idea that memories can be inherited. The organic memory theory contributed to the genocidal programs of the Third Reich, and it erupts in pop-psychology, racist propaganda, and ethnic cleansing. To track the spread, intensity, and endurance of this especially powerful idea, Otis singles out major authors whose work reinforced or ridiculed belief in organic memory. They include writers who were internationally influential yet who simultaneously represented their national traditions: Thomas Mann, Sigmund Freud, C. G. Jung, Emile Zola, Thomas Hardy, Miguel de Unamuno, P�o Baroja, Emilia Pardo Baz¾n, and even Sir Arthur Conan Doyle. The debates over the human genome project and the explosions of ethnic violence in the former Yugoslavia, in Azerbaijan, Somalia, and elsewhere demonstrate how seriously organic memory continues to affect modern medicine and politics.




Human Organic Memory Disorders


Book Description

Brain damage can cause memory to break down in a number of different ways, the analysis of which can illuminate how the intact brain mediates memory processes. After first considering the problems involved in assessing memory, this book provisionally advances a taxonomy of elementary memory disorders and, for each in turn, reviews both the specific processes that are disrupted and the lesions responsible for the disruption. These disorders include short-term memory deficits, deficits in previously well-established memory, memory decifits caused by frontal lobe lesions, the organic amnesias, the disorders of conditioning and skill acquisition. Particular attention is paid to the organic amnesias, about which we know the most, and to the contributions of animal models to our knowledge. Andrew Mayes argues that the memory deficits found in several neurological and psychiatric syndromes comprise co-occurring elementary memory disorders. Finally, he outlines the implications of his taxonomy for our understanding of normal memory. A wide audience of researchers and students will find Human Organic Memory Disorders a helpful guide to a complex problem area.




Introduction to Organic Electronic Devices


Book Description

This book comprehensively describes organic electronic devices developed in the past decades. It not only covers the mainstream devices including organic light emitting diodes (OLEDs), organic photovoltaics (OPVs), and organic thin-film transistors (OTFTs) but also includes devices of recent interest such as organic immune transistors, organic photocatalysis devices, and themoelectrical devices. The book starts from the introduction of basic theory of organic semiconductor materials and devices, which acquaints the readers with the concepts of each type of device described in the following chapters. It also discusses the working principles, device layout, and fabrication process of these devices. The book is intended for undergraduate and postgraduate students who are interested in organic electronics, researchers/engineers working in the field of organic electronic devices/systems.




Printed Organic and Molecular Electronics


Book Description

During the 1980s, functional organic devices were born. For nearly twenty years, organic semiconductor technology has largely been the domain of traditional players within the microelectronics world, involving semiconductor companies, research laboratories, and government organizations. The print industry, a well-established community who shaped much of the Second Millennium, has joined the organic electronics quest during these first few years of the Third Millennium. This seemingly unlikely marriage of two worlds, the microelectronics and graphic print industries, shows incredible promise to spawn an entirely new method of electronics manufacture and, ultimately, whole new industries. The enhancements of organic semiconductor materials seen during the late 1990s and early 2000s have resulted in the fabrication of organic electronics in laboratory environments with impressive performance. Since the early 2000s, scientists have succeeded in applying printing-related technologies to create organic field effect transistors (OFETs) with micron-sized features. This has led to a widespread vision of developing printed electronic products, especially displays, sensors, and simple wireless products (such as RFID tags). The development of high-volume manufacturing platforms based on traditional graphic arts printing platforms naturally addresses demands on product cost and throughput. Moreover, graphics art printing technologies allow one to fabricate organic circuits directly onto low-cost sheet or roll substrates, including plastics and paper. Printed Organic And Molecular Electronics was compiled to create a reference that included existing knowledge from the most renowned industry, academic, and government experts in the fields of organic semiconductor technology, graphic arts printing, micro-contact printing, and molecular electronics. It is divided into sections that consist of the most critical topics required for one to develop a strong understanding of the states of these technologies and the paths for taking them from R&D to the hands of consumers on a massive scale. As such, the book provides both theory as well as technology development results and trends.




Interface Engineering in Organic Field-Effect Transistors


Book Description

Systematic summary of advances in developing effective methodologies of interface engineering in organic field-effect transistors, from models to experimental techniques Interface Engineering in Organic Field-Effect Transistors covers the state of the art in organic field-effect transistors and reviews charge transport at the interfaces, device design concepts, and device fabrication processes, and gives an outlook on the development of future optoelectronic devices. This book starts with an overview of the commonly adopted methods to obtain various semiconductor/semiconductor interfaces and charge transport mechanisms at these heterogeneous interfaces. Then, it covers the modification at the semiconductor/electrode interfaces, through which to tune the work function of electrodes as well as reveal charge injection mechanisms at the interfaces. Charge transport physics at the semiconductor/dielectric interface are discussed in detail. The book describes the remarkable effect of SAM modification on the semiconductor film morphology and thus the electrical performance. In particular, valuable analysis of charge trapping/detrapping engineering at the interface to realize new functions are summarized. Finally, the sensing mechanisms that occur at the semiconductor/environment interfaces of OFETs and the unique detection methods capable of interfacing organic electronics with biology are discussed. Specific sample topics covered in Interface Engineering in Organic Field-Effect Transistors include: Noncovalent modification methods, charge insertion layer at the electrode surface, dielectric surface passivation methods, and covalent modification methods Charge transport mechanism in bulk semiconductors, influence of additives on materials’ nucleation and morphology, solvent additives, and nucleation agents Nanoconfinement effect, enhancing the performance through semiconductor heterojunctions, planar bilayer heterostructure, ambipolar charge-transfer complex, and supramolecular arrangement of heterojunctions Dielectric effect in OFETs, dielectric modification to tune semiconductor morphology, surface energy control, microstructure design, solution shearing, eliminating interfacial traps, and SAM/SiO2 dielectrics A timely resource providing the latest developments in the field and emphasizing new insights for building reliable organic electronic devices, Interface Engineering in Organic Field-Effect Transistors is essential for researchers, scientists, and other interface-related professionals in the fields of organic electronics, nanoelectronics, surface science, solar cells, and sensors.




The Organic Codes


Book Description

The genetic code appeared on Earth with the first cells. The codes of cultural evolution arrived almost four billion years later. These are the only codes that are recognized by modern biology. In this book, however, Marcello Barbieri explains that there are many more organic codes in nature, and their appearance not only took place throughout the history of life but marked the major steps of that history. A code establishes a correspondence between two independent 'worlds', and the codemaker is a third party between those 'worlds'. Therefore the cell can be thought of as a trinity of genotype, phenotype and ribotype. The ancestral ribotypes were the agents which gave rise to the first cells. The book goes on to explain how organic codes and organic memories can be used to shed new light on the problems encountered in cell signalling, epigenesis, embryonic development, and the evolution of language.




Organic Thin-Film Transistor Applications


Book Description

Text provides information about advanced OTFT (Organic thin film transistor) structures, their modeling and extraction of performance parameters, materials of individual layers, their molecular structures, basics of pi-conjugated semiconducting materials and their properties, OTFT charge transport phenomena and fabrication techniques. It includes applications of OTFTs such as single and dual gate OTFT based inverter circuits along with bootstrap techniques, SRAM cell designs based on different material and circuit configurations, light emitting diodes (LEDs). Besides this, application of dual gate OTFT in the logic gate, shift register, Flip-Flop, counter circuits will be included as well.




Solution-Processable Components for Organic Electronic Devices


Book Description

Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.




Electrical Processes in Organic Thin Film Devices


Book Description

Electrical Processes in Organic Thin Film Devices A one-stop examination of fundamental electrical behaviour in organic electronic device architectures In Electrical Processes in Organic Thin Film Devices: From Bulk Materials to Nanoscale Architectures, distinguished researcher Michael C. Petty delivers an in-depth treatment of the electrical behaviour of organic electronic devices focused on first principles. The author describes the fundamental electrical behaviour of various device architectures and offers an introduction to the physical processes that play a role in the electrical conductivity of organic materials. Beginning with band theory, the text moves on to address the effects of thin film device architectures and nanostructures. The book discusses the applications to devices currently in the marketplace, like displays, as well as those under development (transistors, solar cells, and memories). Electrical Processes in Organic Thin Film Devices also describes emerging organic thin film architectures and explores the potential for single molecule electronics and biologically inspired devices. Finally, the book also includes: A detailed introduction to electronic and vibrational states in organic solids, including classical band theory, disordered semiconductors, and lattice vibrations Comprehensive explorations of electrical conductivity, including electronic and ionic processes, carrier drift, diffusion, the Boltzmann Transport Equation, excess carriers, recombination, doping, and superconductivity An overview of important electro-active organic materials, like molecular crystals, charge-transfer complexes, conductive polymers, carbon nanotubes, and graphene Practical considerations of defects and nanoscale phenomena, including transport processes in low-dimensional systems, surfaces and interface states In-depth examinations of metal contacts, including ohmic contacts, the Schottky Barrier, and metal/molecule contacts A systematic guide to the operating principles of metal/insulator/semiconductor structures and the field effect A set of problems (with solutions on-line) for each chapter of the book Perfect for electronics developers and researchers in both industry and academia who study and work with molecular and nanoscale electronics, Electrical Processes in Organic Thin Film Devices also deserves a place in the libraries of undergraduate and postgraduate students in courses on molecular electronics, organic electronics, and plastic electronics.




Organic Spintronics


Book Description

Major development efforts in organic materials research has grown for an array of applications. Organic spintronics, in particular, has flourished in the area of organic magneto-transport. Reflecting the main avenues of advancement in this arena, this volume explores spin injection and manipulation in organic spin valves, the magnetic field effect in organic light-emitting diodes (OLEDs), the spin transport effect in relation to spin manipulation, organic magnets as spin injection electrodes in organic spintronics devices, the coherent control of spins in organic devices using the technique of electronically detected magnetic resonance, and the possibility of using organic spin valves as sensors.




Recent Books