Designing Organic Syntheses


Book Description

Teaches students to use the language of sythesis directly (utilizing the grammar of synthon and disconnection) rather than translating it into that of organic chemistry.




Organic Synthesis


Book Description

The first two chapters provide an introduction to functional groups; these are followed by chapters reviewing basic organic transformations (e.g. oxidation, reduction). The book then looks at carbon-carbon bond formation reactions and ways to 'disconnect' a bigger molecule into simpler building blocks. Most chapters include an extensive list of questions to test the reader's understanding. There is also a new chapter outlining full retrosynthetic analyses of complex molecules which highlights common problems made by scientists.




Organic Syntheses Via Boranes


Book Description




Organic Synthesis


Book Description

Organic Synthesis: Strategy and Control is the long-awaited sequel to Stuart Warren's bestseller Organic Synthesis: The Disconnection Approach, which looked at the planning behind the synthesis of compounds. This unique book now provides a comprehensive, practical account of the key concepts involved in synthesising compounds and focuses on putting the planning into practice. The two themes of the book are strategy and control: solving problems either by finding an alternative strategy or by controlling any established strategy to make it work. The book is divided into five sections that deal with selectivity, carbon-carbon single bonds, carbon-carbon double bonds, stereochemistry and functional group strategy. * A comprehensive, practical account of the key concepts involved in synthesising compounds * Takes a mechanistic approach, which explains reactions and gives guidelines on how reactions might behave in different situations * Focuses on reactions that really work rather than those with limited application * Contains extensive, up-to-date references in each chapter Students and professional chemists familiar with Organic Synthesis: The Disconnection Approach will enjoy the leap into a book designed for chemists at the coalface of organic synthesis.




Organic Syntheses Based on Name Reactions


Book Description

Since the publication of Organic Syntheses Based on Name Reactions and Unnamed Reactions, as Volume 11 in the Tetrahedron Organic Chemistry series, there has been a proliferation of newly discovered Name Reactions in the field of organic chemistry. Hence, this, the second edition of this title has focused on the ongoing development in this area of research. The revised title, Organic Syntheses Based on Name Reactions, reflects the notion whereby many new reagents and reactions are now being referred to by their names. The inclusion of over 155 new stereoselective and regioselective reagents or reactions including asymmetric syntheses, brings the total to over 540. Features that will be invaluable to the reader include over 3000 references, a names index, reagent index, reaction index and a functional group transformation index. The latter of these indexes will allow the reader to search for conversions of one functional group to another and has proved a much utilized tool for the synthetic chemist, searching for pathways to perform synthetic procedures.




Organic Syntheses Based on Name Reactions


Book Description

Rev. ed. of: Organic syntheses based on name reactions and unnamed reactions. 1st ed. 1994.




Catalytic Hydrogenation in Organic Syntheses


Book Description

Catalytic Hydrogenation in Organic Syntheses focuses on the process of catalytic hydrogenation in organic synthesis. This book gives the reader easy access to catalytic history, to show what can be done and how to do it. A variety of working generalities and common sense guides are given as aids in selecting catalytic metal, catalyst support, concentration of metal and catalyst, solvent, and reaction conditions. All manner of hydrogenation catalysts are considered and mechanisms of hydrogenation are presented at a level that is useful to the synthetic organic chemist. This volume is comprised of 15 chapters and begins with an overview of catalytic hydrogenation and heterogeneous hydrogenation catalysts, along with hydrogenation reactors and reaction conditions. The discussion then shifts to the hydrogenation of compounds such as acetylenes, olefins, aldehydes, ketones, nitriles, oximes, acids, esters, lactones, anhydrides, and nitro compounds as well as carbocyclic aromatics and heterocyclic compounds. The reader is also introduced to reductive alkylation, catalytic dehydrohalogenation, and hydrogenolysis of small rings. A chapter on miscellaneous hydrogenolyses concludes the book. This book will be of interest to organic chemists working in the field of catalytic hydrogenation.







Organic Syntheses


Book Description

"Organic Syntheses describes checked and edited experimental procedures, spanning a broad range of synthetic methodologies, and provides chemists with a compendium of new or little known experimental procedures which lead to useful compounds or that illustrate important new developments in methodology. For every procedure, safety warnings are presented along with detailed descriptions for the preparation, purification, and identification of the compound in question. Additionally, special reaction conditions are detailed, along with the source of reagents, helpful waste disposal guidelines, discussions of results, references to the primary literature, and an appendix of nomenclature and registry numbers."--Publisher's website.




Organic Syntheses, Volume 100


Book Description

The current volume continues the tradition of the Organic Syntheses series, providing carefully checked and edited experimental procedures that describe important synthetic methods, transformations, reagents, and synthetic building blocks or intermediates with demonstrated utility in organic synthesis. These significant and interesting procedures should prove worthwhile to many synthetic chemists working in increasingly diverse areas. A trusted guide for professionals in organic and medicinal chemistry in academia, government, and industries, including pharmaceuticals, fine chemicals, agrochemicals, and biotechnological products.