Overcoming Limitations of Iontronic Delivery Devices


Book Description

Organic electronic devices are considered as one of the best candidates to replace conventional inorganic electronic devices due to their electronic conductive functionality, low-cost production techniques, the ability to tune their optical and electronic properties using organic chemistry, and their mechanical flexibility. Moreover, these systems are ideal for bioelectronic applications due to their softness, biocompatibility, and most importantly, their electronic and ionic transport. Indeed, these materials are compatible with biological tissues and cells improving the signal transduction between electronic devices and electrically excitable cells. As ions serve as one of the primary signal carriers of cells, they can selectively tune a cell’s activity; therefore, an improved interface between electronics and biological systems can offer several advantages in healthcare, e.g. the development of efficient drug delivery devices. The main focus of this thesis is the development of electronic delivery devices. Electrophoretic delivery devices called organic electronic ion pumps (OEIPs) are used to electronically control the delivery of small ions, neurotransmitters, and drugs with high spatiotemporal resolution. This work elucidates the ion transport processes and phenomena that happen in the ion exchange membranes during ion delivery and clarifies which parameters are crucial for the ion transport efficiency of the OEIPs. This thesis shows a systematic investigation of these parameters and indicates new methods and OEIP designs to overcome these challenges. Two novel OEIP designs are developed and introduced in this thesis to improve the local ion transport while limiting side effects. OEIPs based on palladium proton trap contacts can improve the membrane permselectivity and optimize the delivery of γ-aminobutyric acid (GABA) neurotransmitters at low pH while preventing any undesired pH changes from proton transport in the biological systems. And OEIPs based on glass capillary fibers are developed to overcome the limitations of devices on planar substrates, related to more complex and larger biologically relevant ion delivery with low mobility for implantable applications. This design can optimize the transport of ions and drugs such as salicylic acid (SA) at low concentrations and at relatively much higher rates, thereby addressing a wider range of biomedically relevant applications and needs.




Conducting Polymer-Based Nanocomposites


Book Description

Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. Integrates the fundamentals of conducting polymers and a range of multifunctional applications Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices




Organic Bioelectronics for Neurotransmitter Release at the Speed of Life


Book Description

The signaling dynamics in neuronal networks includes processes ranging from lifelong neuromodulation to direct synaptic neurotransmission. In chemical synapses, the time delay it takes to pass a signal from one neuron to the next lasts for less than a millisecond. At the post-synaptic neuron, further signaling is either up- or down-regulated, dependent on the specific neurotransmitter and receptor. While this up- and down-regulation of signals usually runs perfectly well and enables complex performance, even a minor dysfunction of this signaling system can cause major complications, in the shape of neurological disorders. The field of organic bioelectronics has the ability to interface neurons with high spatiotemporal recording and stimulation techniques. Local chemical stimulation, i.e. local release of neurotransmitters, enables the possibility of artificially altering the chemical environment in dysfunctional signaling pathways to regain or restore neural function. To successfully interface the biological nervous system with electronics, a range of demands must be met. Organic bioelectronic techniques and materials are capable of reaching the demands on the biological as well as the electronic side of the interface. These demands span from high performance biocompatible materials, to miniaturized and specific device architectures, and high dose control on demand within milliseconds. The content of this thesis is a continuation of the development of organic bioelectronic devices for neurotransmitter delivery. Organic materials are utilized to electrically control the dose of charged neurotransmitters by translating electric charge into controlled artificial release. The first part of the thesis, Papers 1 and 2, includes further development of the resistor-type release device called the organic electronic ion pump. This part includes material evaluation, microfluidic incorporation, and device design considerations. The aim for the second part of this thesis, Papers 3 and 4, is to enhance temporal performance, i.e. reduce the delay between electrical signal and neurotransmitter delivery to corresponding delay in biological neural signaling, while retaining tight dosage control. Diffusion of neurotransmitters between nerve cells is a slow process, but since it is restricted to short distances, the total time delay is short. In our organic bioelectronic devices, several orders of magnitude in speed can be gained by switching from lateral to vertical delivery geometries. This is realized by two different types of vertical diodes combined with a lateral preload and waste configuration. The vertical diode assembly was further expanded with a control electrode that enables individual addressing in each of several combined release sites. These integrated circuits allow for release of neurotransmitters with high on/off release ratios, approaching delivery times on par with biological neurotransmission.




Organic Electronics From Synthesis To Applications


Book Description

Organic electronics is one of the most exciting emerging areas of materials science. It is a highly interdisciplinary research area involving scientists and engineers who develop organic molecules with interesting properties for a variety of applications in technical industries (e.g. circuitry, energy harvesting/storage, etc.) and medical applications (e.g. bioelectronics for sensors, tissue scaffolds for tissue engineering, etc.). This Research Topic collects articles that report advances in chemistry (e.g. design and synthesis of molecules with various molecular weights and structures); physical chemistry and chemical physics, and computational/theoretical research (e.g. to push the boundaries of our understanding); chemical engineering (e.g. design, prototyping and manufacturing devices); materials scientists and technologists to explore different markets for the technologies employing such materials, the organic bioelectronics field and green/sustainable electronics.




Iontronics


Book Description

With contributions from a community of experts, the book focuses on the use of ionic functions to define the principle of operation in polymer devices. It begins by reviewing the scientific understanding and important scientific discoveries made on the electrochemistry of conjugated polymers. It examines the known effects of ion incorporation, including the theory and modulation of electrochemistry in polymer films, and it explores the coupling of electronic and ionic transport in polymer films.




Wearable Bioelectronics


Book Description

Wearable Bioelectronics presents the latest on physical and (bio)chemical sensing for wearable electronics. It covers the miniaturization of bioelectrodes and high-throughput biosensing platforms while also presenting a systemic approach for the development of electrochemical biosensors and bioelectronics for biomedical applications. The book addresses the fundamentals, materials, processes and devices for wearable bioelectronics, showcasing key applications, including device fabrication, manufacturing, and healthcare applications. Topics covered include self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors, epidermal electronics and other exciting applications. Includes comprehensive and systematic coverage of the most exciting and promising bioelectronics, processes for their fabrication, and their applications in healthcare Reviews innovative applications, such as self-powering wearable bioelectronics, electrochemical transducers, textile-based biosensors and electronic skin Examines and discusses the future of wearable bioelectronics Addresses the wearable electronics market as a development of the healthcare industry




Organic Flexible Electronics


Book Description

Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others.Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues.The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics.Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems. Reviews the fundamental properties and methods for optimizing organic electronic materials including chemical doping and techniques to address stability issues Discusses the most promising organic electronic devices for energy, electronics, and biomedical applications Addresses key applications of organic electronic devices in imagers, wearable electronics, bioelectronics




Graphdiyne


Book Description

Graphdiyne Discover the most cutting-edge developments in the study of graphdiyne from a pioneer of the field In Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, accomplished chemist Dr. Yuliang Li delivers a practical and insightful compilation of theoretical and experimental developments in the study of graphdiyne. Of interest to both academics and industrial researchers in the fields of nanoscience, organic chemistry, carbon science, and renewable energies, the book systematically summarizes recent research into the exciting new material. Discover information about the properties of graphdiyne through theoretical simulations and experimental characterizations, as well as the development of graphdiyne with appropriate preparation technology. Learn to create new graphdiyne-based materials and better understand its intrinsic properties. Find out about synthetic methodologies, the controlled growth of aggregated state structures, and structural characterization. In addition to demonstrating the interdisciplinary potential and relevance of graphdiyne, the book also offers readers: A thorough introduction to basic structure and band gap engineering, including molecular and electronic structure, mechanical properties, and the layers structure of bulk graphdiyne Explorations of Graphdiyne synthesis and characterization, including films, nanotube arrays and nanowires, nanowalls, and nanosheets, as well as characterization methods Discussions of the functionalization of graphdiyne, including heteroatom doping, metal decoration, and absorption of guest molecules Rigorous treatments of Graphdiyne-based materials in catalytic applications, including photo- and electrocatalysts Perfect for organic chemists, electronics engineers, materials scientists, and physicists, Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics will also find its place on the bookshelves of surface and solid-state chemists, electrochemists, and catalytic chemists seeking a one-stop reference on this rising-star carbon material.




Nanoporous Alumina


Book Description

This book gives detailed information about the fabrication, properties and applications of nanoporous alumina. Nanoporous anodic alumina prepared by low-cost, simple and scalable electrochemical anodization process due to its unique structure and properties have attracted several thousand publications across many disciplines including nanotechnology, materials science, engineering, optics, electronics and medicine. The book incorporates several themes starting from the understanding fundamental principles of the formation nanopores and theoretical models of the pore growth. The book then focuses on describing soft and hard modification techniques for surface and structural modification of pore structures to tailor specific sensing, transport and optical properties of nano porous alumina required for diverse applications. These broad applications including optical biosensing, electrochemical DNA biosensing, molecular separation, optofluidics and drug delivery are reviewed in separated book chapters. The book appeals to researchers, industry professionals and high-level students.




Ion-Exchange Membrane Separation Processes


Book Description

Today, membranes and membrane processes are used as efficient tools for the separation of liquid mixtures or gases in the chemical and biomedical industry, in water desalination and wastewater purification. Despite the fact that various membrane processes, like reverse osmosis, are described in great detail in a number of books, processes involving ion-exchange membranes are only described in a fragmented way in scientific journals and patents; even though large industrial applications, like electrodialysis, have been around for over half a century. Therefore, this book is emphasizing on the most relevant aspects of ion-exchange membranes. This book provides a comprehensive overview of ion-exchange membrane separation processes covering the fundamentals as well as recent developments of the different products and processes and their applications. The audience for this book is heterogeneous, as it includes plant managers and process engineers as well as research scientists and graduate students. The separate chapters are based on different topics. The first chapter describes the relevant Electromembrane processes in a general overview. The second chapter explains thermodynamic and physicochemical fundamentals. The third chapter gives information about ion-exchange membrane preparation techniques, while the fourth and fifth chapter discusses the processes as unit operations giving examples for the design of specific plants. First work on the principles and applications of electrodialysis and related separation processes Presently no other comprehensive work that can serve as both reference work and text book is available Book is suited for teaching students and as source for detailed information