Metallic Glasses and Their Oxidation


Book Description

Metallic Glasses and Their Oxidation provides a comprehensive review of the structures, properties, preparations, processing and applications of metallic glasses. Special attention is paid to the oxidation behaviors and related mechanisms of metallic glasses that occur during their preparation, processing and application. The book's authors introduce basic knowledge of metallic glasses, including their structures, properties, processing techniques and applications. Then, the theories and techniques commonly used in oxidation investigation are highlighted, including thermal oxidation, native oxidation, stressed oxidation, powder oxidation and oxidation simulation. The book closes with the influence of oxidation on the structures and performances of metallic glasses, proposes measures to control oxidation, and discusses how to take advantage of oxidation to reinforce materials or create new materials. Introduces the latest knowledge on the structures, properties, preparation, processing and application of metallic glasses Reviews the fundamental concepts surrounding metal oxidation, including techniques, devices and methods frequently used in oxidation research Discusses measures to control oxidation and the possibilities of using oxidation to reinforce metallic glasses or create new types of materials




Electrochemical and Corrosion Behavior of Metallic Glasses


Book Description

Metallic glasses are multi-component metallic alloys with disordered atomic distribution unlike their crystalline counterparts with long range periodicity in arrangement of atoms. Metallic glasses of different compositions are being commercially used in bulk form and as coatings because of their excellent corrosion resistance. This book was written with the objective of providing a comprehensive understanding of the electrochemical and corrosion behavior of metallic glasses for a wide range of compositions. Corrosion in structural materials leads to rapid deterioration in the performance of critical components and serious economic implications including property damage and loss in human life. Discovery and development of metallic alloys with enhanced corrosion resistance will have a sizable impact in a number of areas including manufacturing, aerospace, oil and gas, nuclear industry, and load-bearing bioimplants. The corrosion resistance of many metallic glass systems is superior compared to conventionally used alloys in different environments. In this book, we discuss in detail the role of chemistry, processing conditions, environment, and surface state on the corrosion behavior of metallic glasses and compare their performance with conventional alloys. Several of these alloy systems consist of all biocompatible and non-allergenic elements making them attractive for bioimplants, stents, and surgical tools. To that end, critical insights are provided on the bio-corrosion response of some metallic glasses in simulated physiological environment.




Mechanical Behavior of Zr-Based Metallic Glasses and Their Nanocomposites


Book Description

In the present chapter, results of our recent investigations on the role of gallium (Ga) on the aluminum (Al) site in Zr69.5Al7.5-xGaxCu12Ni11 metallic glass (MG) composition have been discussed. The material tailoring and cooling rate effects on the mechanical behavior of Zr-based metallic glasses and their nanocomposites have been studied. The substitution of Ga on the Al site in Zr-Al-Cu-Ni alloy affects the nucleation and growth characteristics of quasicrystals (QCs) and consequently changes the morphology of nanoquasicrystals. The Zr69.5Al7.5-xGaxCu12Ni11 system displayed metallic glass formation in the range of x = 0-7.5. In this process, we have come out with a new glass composition; Zr-Ga-Cu-Ni with glass transition temperature (Tg)-614 K. The effect of cooling rate on the glass forming ability (GFA) and mechanical properties for this new metallic glass composition has been discussed and compared with some other Zr-based metallic glasses. The various indentation parameters such as microhardness, yield strength, strain hardening constant, nature of shear band formation, and so on for the alloys have been analyzed. The study is focused on investigations of these materials to understand the structure (microstructure) property correlations.










Glass Forming Ability and Relaxation Behavior of Zr Based Metallic Glasses


Book Description

Metallic glasses can be considered for many commercial applications because of the higher mechanical strength, corrosion and wear resistance when compared to crystalline materials. To consider them for novel applications, the challenge of preparing metallic glasses from the liquid melt phase and how the properties of metallic glasses change due to relaxation need to be understood better. The glass forming ability (GFA) with variation in composition and inclusion of different alloying elements was studied by using thermal techniques to determine important GFA indicators for Zr-based bulk metallic glasses (BMG). The effect of alloying elements, annealing temperature and annealing time on the thermal and structural relaxation of the BMGs was studied by using an annealing induced relaxation approach. The thermal relaxation was studied by measuring specific heat of the samples using differential scanning calorimeter (DSC) and calculating the enthalpy recovery on reheating in the BMG samples. The structural relaxation was also studied by using extended X-ray absorption fine structure (EXAFS) technique on the as-obtained and relaxed samples. The effects of alloying elements and annealing on electrical resistance were studied by using a two point probe. From the study, it was found that the currently used GFA indicators are inadequate to fully capture and identify the best GFA BMGs. The fragility (beta) of the melt is a new criterion that has been proposed to measure and analyze GFA. The enthalpy relaxation of Zrbased BMGs was found to follow a stretched exponential function, and the parameters obtained showed the BMGs used in the current study are strong glass formers. EXAFS studies showed variations in the structure of BMGs with changes in alloying elements. Furthermore, alloying elements were found to have an effect on the structure of the relaxed BMGs. The resistance of BMGs was found to decrease with relaxation which can be attributed to short range order on annealing.







Electrochemical and Corrosion Behavior of Metallic Glasses


Book Description

Metallic glasses are multi-component metallic alloys with disordered atomic distribution unlike their crystalline counterparts with long range periodicity in arrangement of atoms. Metallic glasses of different compositions are being commercially used in bulk form and as coatings because of their excellent corrosion resistance. This book was written with the objective of providing a comprehensive understanding of the electrochemical and corrosion behavior of metallic glasses for a wide range of compositions. Corrosion in structural materials leads to rapid deterioration in the performance of critical components and serious economic implications including property damage and loss in human life. Discovery and development of metallic alloys with enhanced corrosion resistance will have a sizable impact in a number of areas including manufacturing, aerospace, oil and gas, nuclear industry, and load-bearing bioimplants. The corrosion resistance of many metallic glass systems is superior compared to conventionally used alloys in different environments. In this book, we discuss in detail the role of chemistry, processing conditions, environment, and surface state on the corrosion behavior of metallic glasses and compare their performance with conventional alloys. Several of these alloy systems consist of all biocompatible and non-allergenic elements making them attractive for bioimplants, stents, and surgical tools. To that end, critical insights are provided on the bio-corrosion response of some metallic glasses in simulated physiological environment.




Metals Abstracts


Book Description