Parallel Services


Book Description

By incorporating the latest advancement in complex system modeling and simulation into the service system research, this book makes a valuable contribution to this field that will lead service innovation and service management toward the digital twin and metaverse. It covers important topics such as computational experiments and parallel execution of a parallel service system, the modeling of artificial service systems, semi-parallel service systems, parallel service, and digital twin/metaverse. It also provides a unified framework for realizing a parallel service system that demonstrates the capabilities or potentials of adopting digital twin and metaverse. In addition, the book contains numerous solutions to real-world problems, through which both academic readers and practitioners will gain new perspectives on service systems, and learn how to model a parallel service system or how to use the model to analyze and understand the behaviors of the system. For academic readers, it sheds light on a new research direction within the service science/engineering domain made possible by the latest technologies. For practitioners, with the help of methods such as Agent-based Modeling and Simulation, the book will enable them to enhance their skills in designing or analyzing a service system.




Parallel and Distributed Simulation Systems


Book Description

A state-of-the-art guide for the implementation of distributed simulation technology. The rapid expansion of the Internet and commodity parallel computers has made parallel and distributed simulation (PADS) a hot technology indeed. Applications abound not only in the analysis of complex systems such as transportation or the next-generation Internet, but also in computer-generated virtual worlds for military and professional training, interactive computer games, and the entertainment industry. In this book, PADS expert Richard M. Fujimoto provides software developers with cutting-edge techniques for speeding up the execution of simulations across multiple processors and dealing with data distribution over wide area networks ,including the Internet. With an emphasis on parallel and distributed discrete event simulation technologies, Dr. Fujimoto compiles and consolidates research results in the field spanning the last twenty years, discussing the use of parallel and distributed computers in both the modeling and analysis of system behavior and the creation of distributed virtual environments. While other books on PADS concentrate on applications, Parallel and Distributed Simulation Systems clearly shows how to implement the technology. It explains in detail the synchronization algorithms needed to properly realize the simulations, including an in-depth discussion of time warp and advanced optimistic techniques. Finally, the book is richly supplemented with references, tables and illustrations, and examples of contemporary systems such as the Department of Defense's High Level Architecture (HLA), which has become the standard architecture for defense programs in the United States.




Parallel Programming


Book Description

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. The main goal of the book is to present parallel programming techniques that can be used in many situations for many application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The presented material has been used for courses in parallel programming at different universities for many years.




Parallel Processing from Applications to Systems


Book Description

This text provides one of the broadest presentations of parallel processing available, including the structure of parallelprocessors and parallel algorithms. The emphasis is on mapping algorithms to highly parallel computers, with extensive coverage of array and multiprocessor architectures. Early chapters provide insightful coverage on the analysis of parallel algorithms and program transformations, effectively integrating a variety of material previously scattered throughout the literature. Theory and practice are well balanced across diverse topics in this concise presentation. For exceptional clarity and comprehension, the author presents complex material in geometric graphs as well as algebraic notation. Each chapter includes well-chosen examples, tables summarizing related key concepts and definitions, and a broad range of worked exercises. Overview of common hardware and theoretical models, including algorithm characteristics and impediments to fast performance Analysis of data dependencies and inherent parallelism through program examples, building from simple to complex Graphic and explanatory coverage of program transformations Easy-to-follow presentation of parallel processor structures and interconnection networks, including parallelizing and restructuring compilers Parallel synchronization methods and types of parallel operating systems Detailed descriptions of hypercube systems Specialized chapters on dataflow and on AI architectures




Parallel Programming


Book Description

Innovations in hardware architecture, like hyper-threading or multicore processors, mean that parallel computing resources are available for inexpensive desktop computers. In only a few years, many standard software products will be based on concepts of parallel programming implemented on such hardware, and the range of applications will be much broader than that of scientific computing, up to now the main application area for parallel computing. Rauber and Rünger take up these recent developments in processor architecture by giving detailed descriptions of parallel programming techniques that are necessary for developing efficient programs for multicore processors as well as for parallel cluster systems and supercomputers. Their book is structured in three main parts, covering all areas of parallel computing: the architecture of parallel systems, parallel programming models and environments, and the implementation of efficient application algorithms. The emphasis lies on parallel programming techniques needed for different architectures. For this second edition, all chapters have been carefully revised. The chapter on architecture of parallel systems has been updated considerably, with a greater emphasis on the architecture of multicore systems and adding new material on the latest developments in computer architecture. Lastly, a completely new chapter on general-purpose GPUs and the corresponding programming techniques has been added. The main goal of the book is to present parallel programming techniques that can be used in many situations for a broad range of application areas and which enable the reader to develop correct and efficient parallel programs. Many examples and exercises are provided to show how to apply the techniques. The book can be used as both a textbook for students and a reference book for professionals. The material presented has been used for courses in parallel programming at different universities for many years.




Parallel Programming, Models and Applications in Grid and P2P Systems


Book Description

The demand for more computing power has been a constant trend in many fields of science, engineering and business. Now more than ever, the need for more and more processing power is emerging in the resolution of complex problems from life sciences, financial services, drug discovery, weather forecasting, massive data processing for e-science, e-commerce and e-government etc. Grid and P2P paradigms are based on the premise to deliver greater computing power at less cost, thus enabling the solution of such complex problems. Parallel Programming, Models and Applications in Grid and P2P Systems presents recent advances for grid and P2P paradigms, middleware, programming models, communication libraries, as well as their application to the resolution of real-life problems. By approaching grid and P2P paradigms in an integrated and comprehensive way, we believe that this book will serve as a reference for researchers and developers of the grid and P2P computing communities. Important features of the book include an up-to-date survey of grid and P2P programming models, middleware and communication libraries, new approaches for modeling and performance analysis in grid and P2P systems, novel grid and P2P middleware as well as grid and P2P-enabled applications for real-life problems. Academics, scientists, software developers and engineers interested in the grid and P2P paradigms will find the comprehensive coverage of this book useful for their academic, research and development activity.




Data Parallel C++


Book Description

Learn how to accelerate C++ programs using data parallelism. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This book begins by introducing data parallelism and foundational topics for effective use of the SYCL standard from the Khronos Group and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. Data Parallel C++ provides you with everything needed to use SYCL for programming heterogeneous systems. What You'll Learn Accelerate C++ programs using data-parallel programming Target multiple device types (e.g. CPU, GPU, FPGA) Use SYCL and SYCL compilers Connect with computing’s heterogeneous future via Intel’s oneAPI initiative Who This Book Is For Those new data-parallel programming and computer programmers interested in data-parallel programming using C++.




Programming Models for Parallel Computing


Book Description

An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng




Recent Advances in Parallel Virtual Machine and Message Passing Interface


Book Description

This book constitutes the refereed proceedings of the 13th European PVM/MPI Users' Group Meeting, held in September 2006. The book presents 38 revised full papers together with abstracts of 6 invited contributions, 4 tutorial papers and 6 poster papers. The papers are organized in topical sections on collective communication, communication protocols, debugging and verification, fault tolerance, metacomputing and grid, parallel I/O, implementation issues, object-oriented message passing, limitations and extensions and performance.




QoS Management of Web Services


Book Description

Quality-of-Service (QoS) is normally used to describe the non-functional characteristics of Web services and as a criterion for evaluating different Web services. QoS Management of Web Services presents a new distributed QoS evaluation framework for these services. Moreover, three QoS prediction methods and two methods for creating fault-tolerant Web services are also proposed in this book. It not only provides the latest research results, but also presents an excellent overview of QoS management of Web sciences, making it a valuable resource for researchers and graduate students in service computing. Zibin Zheng is an associate research fellow at the Shenzhen Research Institute, The Chinese University of Hong Kong, China. Professor Michael R. Lyu also works at the same institute.