Book Description
An accessible treatment of the main results in the mathematical theory of the Navier-Stokes equations, primarily aimed at graduate students.
Author : James C. Robinson
Publisher : Cambridge University Press
Page : 487 pages
File Size : 39,25 MB
Release : 2016-09-07
Category : Mathematics
ISBN : 1107019664
An accessible treatment of the main results in the mathematical theory of the Navier-Stokes equations, primarily aimed at graduate students.
Author : Luigi C. Berselli
Publisher : Academic Press
Page : 330 pages
File Size : 30,12 MB
Release : 2021-03-10
Category : Technology & Engineering
ISBN : 0128219459
Three-Dimensional Navier-Stokes Equations for Turbulence provides a rigorous but still accessible account of research into local and global energy dissipation, with particular emphasis on turbulence modeling. The mathematical detail is combined with coverage of physical terms such as energy balance and turbulence to make sure the reader is always in touch with the physical context. All important recent advancements in the analysis of the equations, such as rigorous bounds on structure functions and energy transfer rates in weak solutions, are addressed, and connections are made to numerical methods with many practical applications. The book is written to make this subject accessible to a range of readers, carefully tackling interdisciplinary topics where the combination of theory, numerics, and modeling can be a challenge. - Includes a comprehensive survey of modern reduced-order models, including ones for data assimilation - Includes a self-contained coverage of mathematical analysis of fluid flows, which will act as an ideal introduction to the book for readers without mathematical backgrounds - Presents methods and techniques in a practical way so they can be rapidly applied to the reader's own work
Author : Matthias Hieber
Publisher : Springer Nature
Page : 471 pages
File Size : 30,39 MB
Release : 2020-04-28
Category : Mathematics
ISBN : 3030362264
This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.
Author : Frank H. Berkshire
Publisher : Cambridge University Press
Page : 336 pages
File Size : 38,67 MB
Release : 2021-12-02
Category : Science
ISBN : 1009084186
This introduction to the mathematics of incompressible fluid mechanics and its applications keeps prerequisites to a minimum – only a background knowledge in multivariable calculus and differential equations is required. Part One covers inviscid fluid mechanics, guiding readers from the very basics of how to represent fluid flows through to the incompressible Euler equations and many real-world applications. Part Two covers viscous fluid mechanics, from the stress/rate of strain relation to deriving the incompressible Navier-Stokes equations, through to Beltrami flows, the Reynolds number, Stokes flows, lubrication theory and boundary layers. Also included is a self-contained guide on the global existence of solutions to the incompressible Navier-Stokes equations. Students can test their understanding on 100 progressively structured exercises and look beyond the scope of the text with carefully selected mini-projects. Based on the authors' extensive teaching experience, this is a valuable resource for undergraduate and graduate students across mathematics, science, and engineering.
Author : Hermann Sohr
Publisher : Springer Science & Business Media
Page : 376 pages
File Size : 18,29 MB
Release : 2012-12-13
Category : Mathematics
ISBN : 3034805519
The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.
Author : Dapeng Du
Publisher :
Page : 140 pages
File Size : 29,86 MB
Release : 2005
Category :
ISBN :
Author : James Serrin
Publisher :
Page : 40 pages
File Size : 42,35 MB
Release : 1961
Category : Differential equations, Partial
ISBN :
Author : Giovanni P. Galdi
Publisher : Birkhäuser
Page : 300 pages
File Size : 38,9 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 3034884249
This volume consists of six articles, each treating an important topic in the theory ofthe Navier-Stokes equations, at the research level. Some of the articles are mainly expository, putting together, in a unified setting, the results of recent research papers and conference lectures. Several other articles are devoted mainly to new results, but present them within a wider context and with a fuller exposition than is usual for journals. The plan to publish these articles as a book began with the lecture notes for the short courses of G.P. Galdi and R. Rannacher, given at the beginning of the International Workshop on Theoretical and Numerical Fluid Dynamics, held in Vancouver, Canada, July 27 to August 2, 1996. A renewed energy for this project came with the founding of the Journal of Mathematical Fluid Mechanics, by G.P. Galdi, J. Heywood, and R. Rannacher, in 1998. At that time it was decided that this volume should be published in association with the journal, and expanded to include articles by J. Heywood and W. Nagata, J. Heywood and M. Padula, and P. Gervasio, A. Quarteroni and F. Saleri. The original lecture notes were also revised and updated.
Author : Jacob Bedrossian
Publisher : American Mathematical Society
Page : 235 pages
File Size : 12,60 MB
Release : 2022-09-21
Category : Mathematics
ISBN : 1470470497
The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover the fundamentals of the Navier-Stokes theory: derivation, special solutions, existence theory for strong solutions, Leray theory of weak solutions, weak-strong uniqueness, existence theory of mild solutions, and Prodi-Serrin regularity criteria. Chapter 6 provides a short guide to the must-read topics, including active research directions, for an advanced graduate student working in incompressible fluids. It may be used as a roadmap for a topics course in a subsequent semester. The appendix recalls basic results from real, harmonic, and functional analysis. Each chapter concludes with exercises, making the text suitable for a one-semester graduate course. Prerequisites to this book are the first two semesters of graduate-level analysis and PDE courses.
Author :
Publisher :
Page : 400 pages
File Size : 40,10 MB
Release : 1948
Category : Mechanics, Applied
ISBN :