Partially Integrable Evolution Equations in Physics


Book Description

In the many physical phenomena ruled by partial differential equations, two extreme fields are currently overcrowded due to recent considerable developments: 1) the field of completely integrable equations, whose recent advances are the inverse spectral transform, the recursion operator, underlying Hamiltonian structures, Lax pairs, etc 2) the field of dynamical systems, often built as models of observed physical phenomena: turbulence, intermittency, Poincare sections, transition to chaos, etc. In between there is a very large region where systems are neither integrable nor nonintegrable, but partially integrable, and people working in the latter domain often know methods from either 1) or 2). Due to the growing interest in partially integrable systems, we decided to organize a meeting for physicists active or about to undertake research in this field, and we thought that an appropriate form would be a school. Indeed, some of the above mentioned methods are often adaptable outside their original domain and therefore worth to be taught in an interdisciplinary school. One of the main concerns was to keep a correct balance between physics and mathematics, and this is reflected in the list of courses.




Nonlinear Evolution Equations And Dynamical Systems - Proceedings Of The Workshop (Needs '91)


Book Description

The Workshop NEEDS '91 brought together, from all over the world, scientists engaged in research on nonlinear systems, either their underlying mathematical properties or their physical applications. Accordingly, many talks were devoted to present methods of solution (like spectral transform) and to the investigation of structural (geometrical and/or algebraic) properties of (continuous and discrete) nonlinear evolution equations. Peculiar nonlinear systems, such as cellular automata, were also discussed. Applications to various fields of physics, namely, quantum field theory, fluid dynamics, general relativity and plasma physics were considered.




Direct and Inverse Methods in Nonlinear Evolution Equations


Book Description

Many physical phenomena are described by nonlinear evolution equation. Those that are integrable provide various mathematical methods, presented by experts in this tutorial book, to find special analytic solutions to both integrable and partially integrable equations. The direct method to build solutions includes the analysis of singularities à la Painlevé, Lie symmetries leaving the equation invariant, extension of the Hirota method, construction of the nonlinear superposition formula. The main inverse method described here relies on the bi-hamiltonian structure of integrable equations. The book also presents some extension to equations with discrete independent and dependent variables. The different chapters face from different points of view the theory of exact solutions and of the complete integrability of nonlinear evolution equations. Several examples and applications to concrete problems allow the reader to experience directly the power of the different machineries involved.







Encyclopedia of Nonlinear Science


Book Description

In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.




Nonlinear Symmetries and Nonlinear Equations


Book Description

The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of dift"erent physical situations -up to the point that a lot, if not most, of current fun damental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to dift"erential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool.




Calculus of Variations and Geometric Evolution Problems


Book Description

The international summer school on Calculus of Variations and Geometric Evolution Problems was held at Cetraro, Italy, 1996. The contributions to this volume reflect quite closely the lectures given at Cetraro which have provided an image of a fairly broad field in analysis where in recent years we have seen many important contributions. Among the topics treated in the courses were variational methods for Ginzburg-Landau equations, variational models for microstructure and phase transitions, a variational treatment of the Plateau problem for surfaces of prescribed mean curvature in Riemannian manifolds - both from the classical point of view and in the setting of geometric measure theory.




Integrable Systems, Quantum Groups, and Quantum Field Theories


Book Description

In many ways the last decade has witnessed a surge of interest in the interplay between theoretical physics and some traditional areas of pure mathematics. This book contains the lectures delivered at the NATO-ASI Summer School on `Recent Problems in Mathematical Physics' held at Salamanca, Spain (1992), offering a pedagogical and updated approach to some of the problems that have been at the heart of these events. Among them, we should mention the new mathematical structures related to integrability and quantum field theories, such as quantum groups, conformal field theories, integrable statistical models, and topological quantum field theories, that are discussed at length by some of the leading experts on the areas in several of the lectures contained in the book. Apart from these, traditional and new problems in quantum gravity are reviewed. Other contributions to the School included in the book range from symmetries in partial differential equations to geometrical phases in quantum physics. The book is addressed to researchers in the fields covered, PhD students and any scientist interested in obtaining an updated view of the subjects.




Continuous Symmetries and Integrability of Discrete Equations


Book Description

This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.




The Painlevé Property


Book Description

The subject this volume is explicit integration, that is, the analytical as opposed to the numerical solution, of all kinds of nonlinear differential equations (ordinary differential, partial differential, finite difference). Such equations describe many physical phenomena, their analytic solutions (particular solutions, first integral, and so forth) are in many cases preferable to numerical computation, which may be long, costly and, worst, subject to numerical errors. In addition, the analytic approach can provide a global knowledge of the solution, while the numerical approach is always local. Explicit integration is based on the powerful methods based on an in-depth study of singularities, that were first used by Poincar and subsequently developed by Painlev in his famous Leons de Stockholm of 1895. The recent interest in the subject and in the equations investigated by Painlev dates back about thirty years ago, arising from three, apparently disjoint, fields: the Ising model of statistical physics and field theory, propagation of solitons, and dynamical systems. The chapters in this volume, based on courses given at Cargse 1998, alternate mathematics and physics; they are intended to bring researchers entering the field to the level of present research.