Partition Problems in Topology


Book Description

This book presents results on the case of the Ramsey problem for the uncountable: When does a partition of a square of an uncountable set have an uncountable homogeneous set? This problem most frequently appears in areas of general topology, measure theory, and functional analysis. Building on his solution of one of the two most basic partition problems in general topology, the ``S-space problem,'' the author has unified most of the existing results on the subject and made many improvements and simplifications. The first eight sections of the book require basic knowldege of naive set theory at the level of a first year graduate or advanced undergraduate student. The book may also be of interest to the exclusively set-theoretic reader, for it provides an excellent introduction to the subject of forcing axioms of set theory, such as Martin's axiom and the Proper forcing axiom.




Open Problems in Topology II


Book Description

This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis.* New surveys of research problems in topology* New perspectives on classic problems* Representative surveys of research groups from all around the world




Elementary Topology


Book Description

This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.




Open Problems in Topology


Book Description

From the Introduction: This volume grew from a discussion by the editors on the difficulty of finding good thesis problems for graduate students in topology. Although at any given time we each had our own favorite problems, we acknowledged the need to offer students a wider selection from which to choose a topic peculiar to their interests. One of us remarked, 'Wouldn't it be nice to have a book of current unsolved problems always available to pull down from the shelf?' The other replied 'Why don't we simply produce such a book?' Two years later and not so simply, here is the resulting volume. The intent is to provide not only a source book for thesis-level problems but also a challenge to the best researchers in the field.




A Cp-Theory Problem Book


Book Description

This work is a continuation of the first volume published by Springer in 2011, entitled "A Cp-Theory Problem Book: Topological and Function Spaces." The first volume provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. This present volume covers a wide variety of topics in Cp-theory and general topology at the professional level bringing the reader to the frontiers of modern research. The volume contains 500 problems and exercises with complete solutions. It can also be used as an introduction to advanced set theory and descriptive set theory. The book presents diverse topics of the theory of function spaces with the topology of pointwise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from these areas of research. Moreover, this book gives a reasonably complete coverage of Cp-theory through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research.





Book Description




Algebra and Algebraic Topology


Book Description

This volume gathers results in pure and applied algebra including algebraic topology from researchers around the globe. The selection of these papers was carried out under the auspices of a special editorial board.




Encyclopedia of General Topology


Book Description

This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book.Key features:• More terms from General Topology than any other book ever published• Short and informative articles• Authors include the majority of top researchers in the field• Extensive indexing of terms




Topological Groups and Related Structures, An Introduction to Topological Algebra.


Book Description

Algebraandtopology,thetwofundamentaldomainsofmathematics,playcomplem- tary roles. Topology studies continuity and convergence and provides a general framework to study the concept of a limit. Much of topology is devoted to handling in?nite sets and in?nity itself; the methods developed are qualitative and, in a certain sense, irrational. - gebra studies all kinds of operations and provides a basis for algorithms and calculations. Very often, the methods here are ?nitistic in nature. Because of this difference in nature, algebra and topology have a strong tendency to develop independently, not in direct contact with each other. However, in applications, in higher level domains of mathematics, such as functional analysis, dynamical systems, representation theory, and others, topology and algebra come in contact most naturally. Many of the most important objects of mathematics represent a blend of algebraic and of topologicalstructures. Topologicalfunctionspacesandlineartopologicalspacesingeneral, topological groups and topological ?elds, transformation groups, topological lattices are objects of this kind. Very often an algebraic structure and a topology come naturally together; this is the case when they are both determined by the nature of the elements of the set considered (a group of transformations is a typical example). The rules that describe the relationship between a topology and an algebraic operation are almost always transparentandnatural—theoperationhastobecontinuous,jointlyorseparately.




Lectures on Set Theoretic Topology


Book Description

This survey presents some recent results connecting set theory with the problems of general topology, primarily giving the applications of classical set theory in general topology and not considering problems involving large numbers. The lectures are completely self-contained--this is a good reference book on modern questions of general topology and can serve as an introduction to the applications of set theory and infinite combinatorics.