The Conceptual Foundations of the Statistical Approach in Mechanics


Book Description

Classic 1912 article reformulated the foundations of the statistical approach in mechanics. Largely still valid, the treatment covers older formulation of statistico-mechanical investigations, modern formulation of kineto-statistics of the gas model, and more. 1959 edition.







States of Matter


Book Description

Suitable for advanced undergraduates and graduate students of physics, this uniquely comprehensive overview provides a rigorous, integrated treatment of physical principles and techniques related to gases, liquids, solids, and their phase transitions. 1975 edition.




A Bouquet of Numbers and Other Scientific Offerings


Book Description

A bouquet of numbers for Olivia -- Was Einstein smart? -- A love story -- Deuteronomy -- An unsolved mystery -- Einstein and his teacher -- Einstein versus Einstein -- Wien's law -- A quantum of education -- Sommerfeld's footnote -- Quantum mechanics -- A song for Molly -- A Schrödinger equation -- The life of a cell -- Who was Hall? -- An encore song for Molly -- Entropy -- A letter to my fellow quantum mechanics




The Quantum Ten


Book Description

Theoretical physics is in trouble. At least that’s the impression you’d get from reading a spate of recent books on the continued failure to resolve the 80-year-old problem of unifying the classical and quantum worlds. The seeds of this problem were sewn eighty years ago when a dramatic revolution in physics reached a climax at the 1927 Solvay conference in Brussels. It's the story of a rush to formalize quantum physics, the work of just a handful of men fired by ambition, philosophical conflicts and personal agendas. Sheilla Jones paints an intimate portrait of the ten key figures who wrestled with the mysteries of the new science of the quantum, along with a powerful supporting cast of famous (and not so famous) colleagues. The Brussels conference was the first time so many of the “quantum ten” had been in the same place: Albert Einstein, the lone wolf; Niels Bohr, the obsessive but gentlemanly father figure; Max Born, the anxious hypochondriac; Werner Heisenberg, the intensely ambitious one; Wolfgang Pauli, the sharp-tongued critic with a dark side; Paul Dirac, the silent Englishman; Erwin Schrödinger, the enthusiastic womanizer; Prince Louis de Broglie, the French aristocrat; Pascual Jordan, the ardent Aryan nationalist, who was not invited; and Paul Ehrenfest, who was witness to it all. This is the story of quantum physics that has never been told, an equation-free investigation into the turbulent development of the new science and its very fallible creators, including little-known details of the personal relationship between the deeply troubled Ehrenfest and his dear friend Albert Einstein. Jones weaves together the personal and the scientific in a heartwarming—and heartbreaking—story of the men who struggled to create quantum physics ... a story of passion, tragedy, ambition and science.




Paul Ehrenfest


Book Description




Anxiety and the Equation


Book Description

A man and his equation: the anxiety-plagued nineteenth-century physicist who contributed significantly to our understanding of the second law of thermodynamics. Ludwig Boltzmann's grave in Vienna's Central Cemetery bears a cryptic epitaph: S = k log W. This equation was Boltzmann's great discovery, and it contributed significantly to our understanding of the second law of thermodynamics. In Anxiety and the Equation, Eric Johnson tells the story of a man and his equation: the anxiety-plagued nineteenth-century physicist who did his most important work as he struggled with mental illness. Johnson explains that “S” in Boltzmann's equation refers to entropy, and that entropy is the central quantity in the second law of thermodynamics. The second law is always on, running in the background of our lives, providing a way to differentiate between past and future. We know that the future will be a state of higher entropy than the past, and we have Boltzmann to thank for discovering the equation that underlies that fundamental trend. Johnson, accessibly and engagingly, reassembles Boltzmann's equation from its various components and presents episodes from Boltzmann's life—beginning at the end, with “Boltzmann Kills Himself” and “Boltzmann Is Buried (Not Once, But Twice).” Johnson explains the second law in simple terms, introduces key concepts through thought experiments, and explores Boltzmann's work. He argues that Boltzmann, diagnosed by his contemporaries as neurasthenic, suffered from an anxiety disorder. He was, says Johnson, a man of reason who suffered from irrational concerns about his work, worrying especially about opposition from the scientific establishment of the day. Johnson's clear and concise explanations will acquaint the nonspecialist reader with such seemingly esoteric concepts as microstates, macrostates, fluctuations, the distribution of energy, log functions, and equilibrium. He describes Boltzmann's relationships with other scientists, including Max Planck and Henri Poincaré, and, finally, imagines “an alternative ending,” in which Boltzmann lived on and died of natural causes.




Black-Body Theory and the Quantum Discontinuity, 1894-1912


Book Description

"A masterly assessment of the way the idea of quanta of radiation became part of 20th-century physics. . . . The book not only deals with a topic of importance and interest to all scientists, but is also a polished literary work, described (accurately) by one of its original reviewers as a scientific detective story."—John Gribbin, New Scientist "Every scientist should have this book."—Paul Davies, New Scientist




Galileo Unbound


Book Description

Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.




Writings on Physics and Philosophy


Book Description

Wolfgang Pauli was not only a Nobel laureate and one of the creators of modern physics, but also eminent philosopher of modern science. In his essays he writes about space, time and causality, symmetry and the exclusion principle, but also about the role of the unconscious in modern science.